Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-26T21:35:10.259Z Has data issue: false hasContentIssue false

Arsenic Incorporation in Gallium Nitride grown by Metalorganic Chemical Vapor Deposition using Dimethylhydrazine and Tertiarybutylarsenic

Published online by Cambridge University Press:  15 March 2011

S. Kellermann
Affiliation:
Center of Advanced Materials, Materials Science Division, Lawrence Berkeley National Laboratory, MS 2-200, 1 Cyclotron Rd., Berkeley, CA 94720. Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720.
K. M. Yu
Affiliation:
Center of Advanced Materials, Materials Science Division, Lawrence Berkeley National Laboratory, MS 2-200, 1 Cyclotron Rd., Berkeley, CA 94720.
E. E. Haller
Affiliation:
Center of Advanced Materials, Materials Science Division, Lawrence Berkeley National Laboratory, MS 2-200, 1 Cyclotron Rd., Berkeley, CA 94720. Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720.
E. D. Bourret-Courchesne
Affiliation:
Center of Advanced Materials, Materials Science Division, Lawrence Berkeley National Laboratory, MS 2-200, 1 Cyclotron Rd., Berkeley, CA 94720.
Get access

Abstract

MOCVD growth of As-doped GaN using dimethylhydrazine, triethylgallium and tertiarybutylarsenic has been investigated. A maximum doping concentration of 4.0 × 1019cm−3 at growth temperatures between 600°C and 800°C was obtained. At 1000°C the As doping level dropped below the SIMS detection limit of ∼1.0 × 1017cm−3. The As incorporation depended only weakly on variations of the V/III molar flow ratio between 11 and 61. Raising the As/V molar flow ratio from 0.01 to 0.06 increased the As concentration which then decreased by further increase to 0.11. Different morphologies of the layers were found depending on the growth conditions. A surfactant-like behavior of As was observed leading to smooth GaN films grown on top of the As-doped GaN layer. Two characteristic luminescence peaks at 3.31 eV and 3.425 eV were found for samples doped with As below 900°C. These spectral features are believed to originate at extended lateral defects - presumably stacking faults.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Shan, W., Walukiewicz, W., Ager, J. W. III, Haller, E. E., Geisz, J. F., Friedman, D. J., Olson, J. M., and Kurtz, S. R., Phys. Rev. Lett. 82, 1221 (1999).Google Scholar
2 Kondow, M., Kitatani, T., Nakahara, K., and Tanaka, T., Jpn. J. Appl. Phys. 38, L1355 (1999).Google Scholar
3 Wei, S. H. and Zunger, A., Phys. Rev. Lett. 76, 664 (1996).Google Scholar
4 Friedman, D. J., Geisz, J. F., Kurtz, S. R., and Olson, J. M., J. Cryst. Growth 195, 409 (1998).Google Scholar
5 Ho, I. H. and Stringfellow, G. B., J. Cryst. Growth 178, 1 (1997).Google Scholar
6 Neugebauer, J. and Walle, C. G. Van de, Phys. Rev. B 51, 10568 (1995).Google Scholar
7 Iwata, K., Asahi, H., Asami, K., Kuroiwa, R., and Gonda, S., Jpn. J. Appl. Phys. 37, 1436 (1998).Google Scholar
8 Kuroiwa, R., Asahi, H., Asami, A. K., Kim, S. J., Iwata, K., and Gonda, S., Appl. Phys. Lett. 73, 2630 (1998).Google Scholar
9 Pozina, G., Ivanov, I., Monemar, B., Thordson, J. V., and Andersson, T. G., J. Appl. Phys. 84, 3830 (1998).Google Scholar
10 Li, X., Kim, S., Reuter, E. E., Bishop, S. G., and Coleman, J. J., Appl. Phys. Lett. 72, 1990 (1998).Google Scholar
11 Guido, L. J., Mitev, P., Gherasimova, M., and Gaffey, B., Appl. Phys. Lett. 72, 2005 (1998).Google Scholar
12 Friedman, D. J., Norman, A. G., Geisz, J. F., and Kurtz, S. R., J. Cryst. Growth 208, 11 (2000).Google Scholar
13 Odedra, R., Smith, L.M., Rushworth, S.A., Ravetz, M.S., Clegg, J., Kanjolia, R., Irvine, S.J.C., Ahmed, M. U., Bourret-Courchesne, E.D., Li, N.Y., and Cheng, J., J. Electron Mater. 29, 161 (2000).Google Scholar
14 Cheng, T. S., Jenkins, L. C., Hooper, S. E., Foxon, C. T., Orton, J. W., and Lacklison, D. E., Appl. Phys. Lett. 66, 1509 (1995).Google Scholar
15 Zywietz, T., Neugebauer, J., Scheffler, M., Northrup, J., and Walle, C. G. Van de, MRS Internet J. Nitride Semicond. Res. 3, 6 (1998).Google Scholar
16 Kobayashi, Y., Scholz, F., and Kobayashi, N., Jpn. J. Appl. Phys. 36, 2592 (1997).Google Scholar
17 Stringfellow, G. B., Organometalic vapor phase epitaxy: theory and praxis, (Academic Press, San Diego, 1989).Google Scholar
18 Gherasimova, M., Gaffey, B., Mitev, P., Guido, L. J., Chang, K. L., Hsieh, K. C., Mitha, S., and Spear, J., MRS Internet J. Nitride Semicond. Res. 4S1, G3.44 (1999).Google Scholar
19 Rieger, W., Dimitrov, R., Brunner, D., Rohrer, E., Ambacher, O., and Stutzmann, M., Phys. Rev. B 54, 17596 (1996).Google Scholar
20 Bandic, Z. Z., McGill, T. C., and Ikonic, Z., Phys. Rev. B 56, 3564 (1997).Google Scholar
21 Stampfl, C. and Walle, C. G. Van de, Phys. Rev. B 57, R15052 (1998).Google Scholar
22 Pankove, J. I. and Hutchby, J.A., J. Appl. Phys. 47, 5387 (1976).Google Scholar