Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-08T12:41:05.224Z Has data issue: false hasContentIssue false

Applications of Soft X-Ray Fluorescence Spectroscopy in Materials Science

Published online by Cambridge University Press:  15 February 2011

T.A. Callcotit
Affiliation:
Department of Physics, University of Tennessee, Knoxville, TN 37996
J.J. Jia
Affiliation:
Department of Physics, University of Tennessee, Knoxville, TN 37996
L. Zhou
Affiliation:
Department of Physics, University of Tennessee, Knoxville, TN 37996
D.L. Ederer
Affiliation:
Department of Physics, Tulane University, New Orleans, LA 70118
L.J. Terminello
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
J.A. CARLISLE
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550
R.C.C. Perera
Affiliation:
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
M.G. Samant
Affiliation:
IBM Almaden Research Center, San Jose, CA 95120
F.J. Himpsel
Affiliation:
Department of Physics, University of Wisconsin, Madison, WI 53706
E.T. Arakawa
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831
Get access

Abstract

Soft x-ray fluorescence spectroscopy provides an element and angular momentum selective measure of the valence band density of states in complex materials. Results are presented demonstrating the use of SXF both as a means of solving materials problems and as a means of increasing our fundamental understanding of low energy excitation processes in various types of materials. As examples of materials applications, we discuss the L2,3 spectra of Si in various environments, and describe radiation damage studies in Beryl. Fundamental new insights are provided by the study of SXF spectra excited near an x-ray threshold. For such excitation, recent work demonstrates that an electronic Raman scattering process can greatly modify the normal fluorescence spectrum. We discuss near threshold studies of graphite, h-BN and NiS to demonstrate that the nature of the electronic excitation processes differs dramatically in various classes of materials and provides important new insights into their properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Callcott, T.A., Tsang, K.L., Zhang, C.H., Ederer, D.L. and Arakawa, E.T., Rev. Sci. Instrum. 57, 2680 (1986).Google Scholar
2. Nordgren, J., Bray, G., Cramm, S., Nyholm, R., Rubensson, J.-E. and Wassdahl, N., Rev. Sci. Instrum. 60, 1690 (1989).Google Scholar
3. Callcott, T.A., Ederer, D.L. and Arakawa, E.T., SPIE Volume 447, 61 (1984).Google Scholar
4. Ma, Y., Wassdahl, N., Skytt, P., Guo, J., Nordgren, J., Johnson, P.D., Rubensson, J.-E., Boske, T., Eberhardt, W., and Kevan, S.D., Phys. Rev. Lett. 69, 2598 (1992).Google Scholar
5. Carlisle, J.A., Shirley, E.L., Hudson, E.A., Terminello, L.J., Callcott, T.A., Jia, J.J., Ederer, D.L., Perera, R.C.C., and Himpsel, F.J., Phys. Rev. Lett. 74, 1234 (1995).Google Scholar
6. Rubensson, J.-E., Mueller, D., Shuker, R., Ederer, D.L., Zhang, C.H., Jia, J.J., and Callcott, T.A., Phys. Rev. Lett. 64, 1047 (1990).Google Scholar
7. Jia, J.J., Shirley, E.L., Carlisle, J.A.., Callcott, T.A., Terminello, L.J., Asfaw, A., Ederer, D.L., Himpsel, F.J., Perera, R.C. C., (Phys. Rev. Lett., in press); W.L. O-Brien, J.J. Jia, Q.-Y. Dong, T.A. Callcott, K.E. Miyano, K.L. Ederer, D.R. Mueller, and C.-C. Kao, Phys. Rev. Lett. 70, 238 (1993).Google Scholar
8. Zhou, L., Callcott, T.A., Jia, J.J., Lin, L., Ederer, D.L., TermineIlo, L.J., Carlisle, J.A., Perera, R.C.C., Yablonska, K., (SXF of TM sulfides, to be submitted to Phys. Rev.).Google Scholar
9. Miyano, K.E., Ederer, D.L., Callcott, T. A., O'Brien, W.L., Jia, J.J., Zhou, L., Dong, Q.Y., Ma, Y., Woicik, J.C., and Mueller, D.R., Phys. Rev. B 48, 1918 (1993).Google Scholar
10. Jia, J.J., O'Brien, W.L., Callcott, T.A., Rowe, J.E., Phys. Rev. B 43, 4863 (1991).Google Scholar
11. O'Brien, W.L., Jia, J.J., Dong, Q.-Y., Callcott, T.A., Mueller, D.R., and Ederer, D.L., Phys. Rev. B 45, 3882 (1992–1).Google Scholar
12. Jia, J.J., Callcott, T.A., O'Brien, W.L., Dong, Q.Y., Mueller, D.R., Ederer, D.L., Tan, Z. and Budnick, J.I., Phys. Rev. B 46, 9446 (1992-1).Google Scholar
13. Carlisle, J.A., Chaiken, A., Michel, R.P., Terminello, L.J., Jia, J.J., Callcott, T.A., Ederer, D.L., Phys. Rev. B, Rapid Communications, in press).Google Scholar
14. Callcott, T.A., O'Brien, W.L., Dong, Q.-Y., Jia, J.J., Ederer, D.L., Mueller, D.R. (Radiation damage in Beryl, unpublished).Google Scholar
15. Tulkki, J. and Aberg, T., J. Phys. B 15, 1435 (1982).Google Scholar
16. Tulkki, J., Phys. Rev. A 27, 3375 (1985).Google Scholar
17. Zaanen, J., Sawatzky, G.A. and Allen, J.W., J. of Magn. and Magn. Mat. 54–57, 607 (1986).Google Scholar
18. Zaanen, J. and Sawatzky, G.A., Can. J. Phys. 65, 1262 (1987).Google Scholar