Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-12T23:24:32.654Z Has data issue: false hasContentIssue false

Application of Selective Area MOVPE for DFB Gratings with Modulated Coupling Coefficient

Published online by Cambridge University Press:  22 February 2011

Peer Tidemand-Petersson
Affiliation:
Tele Danmark Research, Lyngs0 A116 2, DK-2970 Horsholm, Denmark
Ole Albrektsen
Affiliation:
Tele Danmark Research, Lyngs0 A116 2, DK-2970 Horsholm, Denmark
Anders Møller-Larsen
Affiliation:
Tele Danmark Research, Lyngs0 A116 2, DK-2970 Horsholm, Denmark
Joseph Salzman
Affiliation:
Tele Danmark Research, Lyngs0 A116 2, DK-2970 Horsholm, Denmark
Get access

Abstract

A new application of selective area metalorganic vapour phase epitaxy is demonstrated: fabrication of distributed feedback (DFB) gratings with sub-micron period and modulated coupling coefficient Kc. A SiO2 mask layer defines the InGaAs(P) grating pattern as well as the lateral variation in growth rate and, hence, thickness of the grating. In this way K can be varied along the laser cavity in a controlled and reproducible manner.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Soda, H., Kotaki, Y., Sudo, H., Ishikawa, H., Yamakoshi, S., and Imai, H., IEEE J. Quantum Electron. QE–23, 804 (1987).Google Scholar
2. Ogita, S., Kotaki, Y., Matsuda, M., Kuwahara, Y., and Ishikawa, H., J. Lightwave Technol. 8, 1596 (1990).Google Scholar
3. Zhou, P. and Lee, G.S., Electron. Lett. 26 1660 (1990).Google Scholar
4. Okai, M., Tsuchiya, T., Uomi, K., Chinone, N., and Harada, T., IEEE J. Quantum Electron. 27,1767 (1991).Google Scholar
5. Sakartedjo, K., Eda, N., Furuya, K., Suematsu, Y., Koyama, F., and Tanbun-Ek, T., Electron. Lett. 20, 80 (1984).Google Scholar
6. Soda, H., Wakao, K., Tanahashi, T., and Imai, H., Electron. Lett. 20, 1016 (1984).Google Scholar
7. Schrans, T. and Yariv, A., Appl. Phys. Lett. 56, 1526 (1990).Google Scholar
8. Morthier, G., David, K., Vakwikelberge, P., and Baets, R., IEEE Phot. Tech. Lett. 2, 388 (1990).Google Scholar
9. Talneau, A., Charil, J., Ougazzaden, A., and Bouley, J.C., Electron. Lett. 28, 1395 (1992).Google Scholar
10. Nilsson, S., Kjellberg, T., Klinga, T., Wallin, J., Streubel, K., and Schatz, R., IEEE Phot. Tech. Lett. 5, 1128 (1993).Google Scholar
11. Galeuchet, Y.D. and Roentgen, P., J. Cryst. Growth 107, 147 (1991).Google Scholar
12. Davies, G.J., Duncan, W.J., Skevington, P.J., French, C.L. and Foord, J.S. in Materials for Optoelectronic Devices, OEICs and Photonics, edited by Schlötterer, H., Quillec, M., Greene, P.D. and Bertolotti, M. (Eur. Mater. Res. Soc. Proc. 19, Strasbourg, France, 1990) pp. 93100.Google Scholar
13. Caneau, C., Bhat, R., Frei, M.R., Chang, C.C., Deri, R.J., and Coza, M.A., Cryst. Growth 124, 243 (1992).Google Scholar
14. Thrush, E.J., Gibbon, M.A., Stagg, J.P., Cureton, C.G., Jones, C.J., Mallard, R.E., Norman, A.G., and Booker, G.R., J. Cryst. Growth 124, 249 (1992).Google Scholar
15. Sasaki, T., Kitamura, M. and Mito, I., J. Crystal Growth 132, 435 (1993).Google Scholar
16. Albrektsen, O., Salzman, J., Tidemand-Petersson, P., Hanberg, J., Møller-Larsen, A. and Nielsen, J.M., in Proc. Sixth Intern. Conf. on Indium Phosphide and Related Materials, March 1994, Santa Barbara, California.Google Scholar
17. Walpita, L.M., J. Opt. Soc. Am. A, 2, 595 (1985).Google Scholar
18. Correc, P., IEEE J. Quantum Electron., QE–24, 8 (1988).Google Scholar
19. Jonsson, B., ‘Field - A Versatile Program for Modeling of One-Dimensional Optical Waveguides’, Technical Report No. TR 92316, Chalmers University of Technology, Göteborg, 1992.Google Scholar