Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-30T18:22:04.395Z Has data issue: false hasContentIssue false

The Application of Poly(Phenylene) Type Polymers and Oligomers in Electroluminescent Color Displays

Published online by Cambridge University Press:  10 February 2011

S. Tasch
Affiliation:
Institut fur Festkörperphysik, SFB Elektroaktive Stoffe, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria
C. Brandstätter
Affiliation:
Institut fur Festkörperphysik, SFB Elektroaktive Stoffe, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria
W. Graupner
Affiliation:
Institut fur Festkörperphysik, SFB Elektroaktive Stoffe, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria
S. Hampel
Affiliation:
Institut fur Festkörperphysik, SFB Elektroaktive Stoffe, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria
C. Hochfilzer
Affiliation:
Institut fur Festkörperphysik, SFB Elektroaktive Stoffe, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria
J. W. E. List
Affiliation:
Institut fur Festkörperphysik, SFB Elektroaktive Stoffe, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria
F. Meghdadi
Affiliation:
Institut fur Festkörperphysik, SFB Elektroaktive Stoffe, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria
G. Leising
Affiliation:
Institut fur Festkörperphysik, SFB Elektroaktive Stoffe, Technische Universität Graz, Petersgasse 16, A-8010 Graz, Austria
P. Schlichting
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128, Mainz, Germany
U. Rohr
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128, Mainz, Germany
Y. Geerts
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128, Mainz, Germany
U. Scherf
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128, Mainz, Germany
K. Müllen
Affiliation:
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, D-55128, Mainz, Germany
Get access

Abstract

Due to their high photoluminescence efficiency (>30%), high environmental stability and the good charge transport properties the derivatives of poly(paraphenylene) (PPP), as the laddertype PPP (LPPP) and the oligomer hexaphenyl, are very suitable materials to realise efficient, stable, large area blue organic light-emitting diodes (OLEDs). The emission of blue OLEDs can be efficiently converted into all other emission colors either by an external color conversion technique (ECCT) or an internal color conversion technique (ICCT) and hence are very interesting for a number of display applications:

Firstly, we demonstrate the realisation of efficient red-green-blue (RGB) emission colors (representing the RGB-pixels in a multicolor display) by an external CCT. In this case the blue EL device is covered with highly fluorescenct dye/matrix layers, which are excited by the blue emission and emit photoluminescence light in a lower energetic range.

Secondly, a new method for producing efficient white light-emitting polymer diodes (which are interesting for e.g. backlight sources in liquid crystal displays) based on a blend of two polymers is presented: a blue light-emitting m-LPPP and a red-orange emitter poly(perylene-co-diethynylbenzene) (PPDB). The red-orange emission is created within the EL device (ICCT) by an excitation energy transfer from m-LPPP into the energetically lower lying states of PPDB. This internal excitation energy transfer is very efficient, so that only a concentration of 0.05 weight % PPDB in the polymer blend is required in order to obtain white light emission.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Tang, C. W. and VanSlyke, S. A., Appl. Phys. Lett. 51, 913 (1987).Google Scholar
[2] Adachi, C., Tokito, S., Tsutsui, T., and Saito, S., Jpn. J. Appl. Phys. 27, L269 (1988).Google Scholar
[3] Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burn, P. L., Kraft, A., Holmes, A. B., Nature 347, 530 (1990).Google Scholar
[4] Braun, D., Heeger, A. J., Appl. Phys. Lett. 58, 1982 (1991).Google Scholar
[5] Grem, G., Leditzky, G., Ullrich, B., Leising, G., Adv. Mater. 4, 36 (1992).Google Scholar
[6] Berggren, M., Granström, M., Inganäs, O. and Andersson, M., Adv. Mater. 7, 900 (1995).Google Scholar
[7] Leising, G., Phys. Bl. 49, 510 (1993).Google Scholar
[8] Forrest, S. R., Burrows, P. E., Thompson, M. E., Laser Focus World February 99 (1995).Google Scholar
[9] Bulovic, V., Gu, G., Burrows, P. E., Forrest, S. R., Thompson, M. E., Nature 380, 29 (1996).Google Scholar
[10] Wakimoto, T., Mirayama, R., Nakada, H., Imai, K., Sato, G. and Nomura, M.: Polymer Reprints Japan 40, 3600 (1991).Google Scholar
[11] Hamada, Y., Sano, T., Shibata, K. and Kuroki, K., Jpn. J. Appl. Phys. 34, 824 (1995).Google Scholar
[12] Berggren, M., Inganäs, O., Gustafsson, G., Rasmusson, J., Andersson, M. R., Hjertberg, T. and Wennerström, O., Nature 372, 444 (1994)Google Scholar
[13] Yu, G., Nishino, H., Heeger, A. J., Chen, T.-A., Rieke, R. D., Synth. Met. 72, 249 (1995).Google Scholar
[14] Greenham, N. C., Friend, R. H. and Bradley, D. C., Adv. Mater. 6, 491 (1994).Google Scholar
[15] Pommerehne, J., Vestweber, H., Guss, W., Mahrt, R. F., Bässler, H., Porsch, M. and Daub, J., Adv. Mater. 6, 551 (1995).Google Scholar
[16] Fujii, A., Yoshida, M., Ohmori, Y. and Yoshino, K., Jap. Appl. Phys. 34, 499 (1995).Google Scholar
[17] Tasch, S., Niko, A., Leising, G., Scherf, U., Appl. Phys. Lett. 68, 1090 (1996).Google Scholar
[18] Tokailin, H., Hosokawa, C., Kusomoto, T., US-Patent 5, 126, 214 (1992);Google Scholar
Tang, C. W., Williams, D. J., Chang, J. C., US-Patent 5, 294, 870 (1994);Google Scholar
Matsuura, M., Tokailin, H., Eida, M., Hosokawa, C., Hironaka, Y. and Kusumoto, T., Proc. Asia Diplay ‘ 95, 269 (1995).Google Scholar
[19] Tasch, S., Brandstätter, C., Meghdadi, F., Leising, G., Athouel, L., Froyer, G., Adv. Mat. 9, 33 (1997).Google Scholar
[20] Colorimetry, 2nd. edition, CIE-Publication, No. 15.2 (CIE, Vienna, 1986).Google Scholar
[21] Niko, A., Tasch, S., Meghdadi, F., Leising, G. (submitted to J. Appl. Phys.)Google Scholar
[22] Kido, J., Hongawa, K., Okuyama, K. and Nagai, K., Appl. Phys. Lett. 64, 615 (1994).Google Scholar
[23] Kido, J., Kaimura, M., Nagai, K., Science 267, 1332 (1995).Google Scholar
[24] Kido, J., Ikeda, W., Kimura, M., and Nagai, K., Jpn. J. Appl. Phys. 35, L394 (1996).Google Scholar
[25] Dodabalapur, A., Rothberg, L. J., and Miller, T. M., Appl. Phys. Lett. 65, 2308 (1994).Google Scholar
[26] Berggren, M., Gustafsson, G., and Inganäs, O., Andersson, M. R., Hjertberg, T., and Wennerström, O., J. Appl. Phys. 76 (1994) 7530.Google Scholar
[27] Granström, M. and Inganäs, O., Appl. Phys. Lett. 68, 147 (1996).Google Scholar
[28] Jordan, R. H., Dodabalapur, A., Strukelj, M., and Miller, T. M., Appl. Phys. Lett. 68, 1192 (1996).Google Scholar
[29] Wu, C.C., Sturm, J. C, and Register, R.A., Appl. Phys. Lett. 69, 3117 (1996).Google Scholar
[30] Scherf, U., Müllen, K., Makromolek, . Chem., Rap. Commun. 12, 489 (1991).Google Scholar
[31] Quante, H., Schlichting, P., Rohr, U., Geerts, Y., Müllen, K., Macromol. Chem. Phys. (in print).Google Scholar
[32] Tasch, S., Hochfilzer, C., List, J.W.E., Leising, G., Schlichting, P., Rohr, U., Geerts, Y., Scherf, U., Müllen, K. (submitted to Phys. Rev. B).Google Scholar
[33] Tasch, S., List, J.W. E., Ekström, O., Leising, G., Schlichting, P., Rohr, U., Geerts, Y., Scherf, U., Müllen, K. (submitted to Appl. Phys. Lett.).Google Scholar