Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T08:43:37.586Z Has data issue: false hasContentIssue false

The Application of Novel Chemical Precursors for the Preparation of Si-Ge-C Heterostructures and Superlattices

Published online by Cambridge University Press:  10 February 2011

David C. Nesting
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287 Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287
John Kouvetakis
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287 Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287
Julie Lorentzen
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287 Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287
José Menéndez
Affiliation:
Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287 Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287
Get access

Abstract

We have investigated new synthetic methods to Si-Ge-C materials by UHV-CVD and novel chemical precursors. The reactions of (SiH3)4C and (GeH3)4C with GeH4 and SiH4 produce diamond structured materials with the general formula (CSi4)xGey and (CGe4)xSiy respectively. These reactions demonstrate the application of novel C-H free precursors that incorporate Si4C and Ge4C building blocks to prepare single phase materials containing a significant amount of carbon (5–6 at.%). They also indicate the remarkable degree of compositional control provided by the precursor to incorporate the Si4C and Ge4C molecular framework into the solid state. A range of Si1-x-yGexCy compositions were also prepared pseudomorphically on [1 0 0] Si at 450–500 °C via reactions of (SiH3)4C with mixtures of GeH4 and Si4. The (Si2Ge)31C6 composition appears to display ordering of the Ge and Si atoms in the structure. The incorporation of C in the Si planes seems to provide local strain centers which facilitate the formation of this ordered phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hansen, M., Constitution of Binary Alloys, 2nd ed., (McGraw-Hill, New York, 1958), p. 774.Google Scholar
2. Patton, G. L., Harame, D. L., Strock, J. M., Mayerson, B. S. and Scilla, G. S., IEEE Electron Device Letters 10, 534 (1989).Google Scholar
3. Tsaur, B.-Y., Chen, C. K. and Marino, S. A., Optical Engineering 33, 72 (1994).Google Scholar
4. Chang, C. L., Amour, A. S. and Sturm, J. C., Appl. Phys. Lett. 70, 1557 (1997).Google Scholar
5. Presting, H., Mat. Res. Soc. Symp. Proc. 379, 417 (1995).Google Scholar
6. Kouvetakis, J., Nesting, D. and O'Keeffe, M., Chem. Mater. 10, 1396 (1998).Google Scholar
7. Kouvetakis, J., Todd, M., Chandrasekhar, D. and Smith, D. J., Appl. Phys. Lett. 65, 2960 (1994).Google Scholar
8. Abstreiter, G., Physica Scripta T 49, 42 (1993).Google Scholar
9. Berding, M. A., Sher, A. and van Schilfgaarde, M., Phys. Rev. B. 56, 3885 (1997).Google Scholar
10. Ourmazd, A. and Bean, J. C., Phys. Rev. Lett. 55, 765 (1985).Google Scholar
11. Lockwood, D. J., Rajan, K., Fenton, E. W., Baribeau, J.-M. and Denhoff, M. W., Solid State Comm. 61,465 (1987).Google Scholar
12. Mifller, E., Nissen, H.-U., Ospelt, M. and von Kanel, H., Phys. Rev. Lett. 63, 1819 (1989).Google Scholar
13. Tsang, J. C., Kesan, V. P., Freeouf, J. L., LeGoues, F. K. and Iyer, S. S., Phys. Rev. B 46, 6907 (1992).Google Scholar
14. Kesan, V. P., LeGoues, F. K. and Iyer, S. S., Phys. Rev. B 46, 1576 (1992).Google Scholar
15. LeGoues, F. K., Kesan, V. P. and Iyer, S. S., Phys. Rev. Lett. 64, 40 (1990).Google Scholar
16. Todd, M., Matsunaga, P., Kouvetakis, J., Chandrasekhar, D. and Smith, D. J., Appl. Phys. Lett. 67, 1247 (1995).Google Scholar
17. Hager, R., Steigelman, O., Muller, G., Schmidbaur, H., Robertson, H. H. and Rankin, D. W., Angew. Chem. Int. Ed. 29, 201 (1990).Google Scholar
18. Matsunaga, P. T., Kouvetakis, J. and Groy, T. L., Inorg. Chem. 34, 5103 (1995).Google Scholar