Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-07-02T10:19:46.972Z Has data issue: false hasContentIssue false

Application of MeV Ion Implantation in the Formation of Nano-Metallic Clusters in Silica

Published online by Cambridge University Press:  10 February 2011

D. Ila
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal AL 35762
Z. Wu
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal AL 35762
R. L. Zimmerman
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal AL 35762
S. Sarkisov
Affiliation:
Center for Irradiation of Materials, Alabama A&M University, Normal AL 35762
C. C. Smith
Affiliation:
NASA-MSFC, Marshall Space Flight Center AL 35898
D. B. Poker
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge TN
D. K. Hensley
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge TN
Get access

Abstract

The implantation of metal ions into photorefractive materials followed by thermal annealing leads to an increase in resonance optical absorption as well as an enhancement of the nonlinear optical properties. We have implanted ions of Au (3.6 MeV), Ag (1.5 MeV) and Cu (2.0 MeV) into pure silica followed by careful heat treatment. Using optical absorption spectrophotometry and rutherford backscattering spectrometry we have measured the cluster size for each heat treatment temperature and determined the activation energies for their formation. The third order electric susceptibility for silica with 2 nm gold clusters has been determined by Z-scan to be 65×10−8 esu.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Arnold, G. W., J. Appl. Phys. 46, 4466 (1975).Google Scholar
2. Arnold, G. W. and Bordes, J. A., J. Appl. Phy. 48, 1488 (1977).Google Scholar
3. Magruder, R. H. III, Zuhr, R. A., Osborne, D. H. Jr, Nucl. Inst. & Meth. in Phys. Res. B99, 590(1995).Google Scholar
4. Takeda, Y., Hioki, T., Motohiro, T., Noda, S. and Kurauchi, T., Nucl. Instr. Meth. B91, 515519(1994).Google Scholar
5. White, C. W., Zhou, D. S., Budai, J. D., Zuhr, R. A., Magruder, R. H. and Osborne, D. H., Mat. Res. Soc. Symp. Proc. Vol. 316, 499 (1994).Google Scholar
6. Fukumi, K., Chayahara, A., Adachi, M., Kadono, K., Sakaguchi, T., Miya, M., Horino, Y., Kitamura, N., Hayakawa, J., Yamashita, H., Fujii, K. and Satou, M., Mat. Res. Soc. Symp. Proc. Vol. 235, 389399(1992).Google Scholar
7. Ziegler, F., Biersack, J. P. and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press Inc., New York, 1985).Google Scholar
8. Schineller, E. R., Flam, R. P. and Wilmot, D. W., J. Opt. Soc. Am. 58, 1171 (1968).Google Scholar
9. Townsend, P. D., Nucl. Instr. Meth. in Phys. Res. B46, 18 (1990).Google Scholar
10. Doyle, W. T., Phys. Rev. 111, 1067 (1958).Google Scholar
11. Ricard, D., Roussignol, Ph. and Flytzanis, Chr., Optics Letters 10, 511513 (1985).Google Scholar