Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-06-22T07:09:10.206Z Has data issue: false hasContentIssue false

Annealing Behavior of Locally Confined Dislocation Loops Under Inert And Oxidizing Ambient

Published online by Cambridge University Press:  01 February 2011

C. Tsamis
Affiliation:
IMEL/NCSR “Demokritos”, Terma Patriarchou Grigoriou, P.O.BOX 60228, 15310 Aghia Paraskevi, Athens, Greece
D. Skarlatos
Affiliation:
IMEL/NCSR “Demokritos”, Terma Patriarchou Grigoriou, P.O.BOX 60228, 15310 Aghia Paraskevi, Athens, Greece
I. Raptis
Affiliation:
IMEL/NCSR “Demokritos”, Terma Patriarchou Grigoriou, P.O.BOX 60228, 15310 Aghia Paraskevi, Athens, Greece
D. Tsoukalas
Affiliation:
IMEL/NCSR “Demokritos”, Terma Patriarchou Grigoriou, P.O.BOX 60228, 15310 Aghia Paraskevi, Athens, Greece
P. Calvo
Affiliation:
CEMES/CNRS, 29 rue J. Marvig, BP 4347 31055 Toulouse cedex 4, France
B. Colombeau
Affiliation:
CEMES/CNRS, 29 rue J. Marvig, BP 4347 31055 Toulouse cedex 4, France
F. Cristiano
Affiliation:
LAAS/CNRS, 7 av. Col. Roche, 31077 Toulouse, France
A. Claverie
Affiliation:
CEMES/CNRS, 29 rue J. Marvig, BP 4347 31055 Toulouse cedex 4, France
Get access

Abstract

In this work, we report data for the growth kinetics of locally confined dislocation loops organized within lines of controlled dimension and periodicity. The dislocation loop lines were formed in the crystalline substrate after local Si implantation and annealing in predefined areas. The distance between the lines ranges between 0.2 νm to 5 μm. It is shown that the kinetics of the DLs depends on the distance between them. When the distance is less than 1 μm, the DLs behave in a similar fashion like those grown in a continuous layer, under inert and oxidizing conditions. However, when the distance between the lines is increased (eg. 5 μm), the behavior of the loops is changed. Fast dissolution of the dislocations loops is observed during annealing in inert ambient, due to enhanced interstitial losses, while under oxidizing conditions the loops grow faster.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, J., Law, M. E. and Jones, K. S., Solid-State Electronics, 38 (7), 1305 (1995)Google Scholar
2. Chaudhry, S., Liu, J., Jones, K. S. and Law, M. E., Solid-State Electronics, 38 (7), 1313 (1995)Google Scholar
3. Bonafos, C., Omri, M., de Mauduit, B., Assayag, G. Ben, Claverie, A., Alquier, D. and Mathiot, D., J. Appl., Phys. 82 (6), 2855 (1997)Google Scholar
4. Chao, H. S., Griffin, P. G. and Plummer, J. D., Appl. Phys. Lett., 68 (25), 3570 (1996)Google Scholar
5. Skarlatos, D., Giles, L. F., Tsamis, C., Claverie, A. and Tsoukalas, D., MRS Spring Meeting (1999)Google Scholar
6. Meng, H. L., Prussin, S., Law, M. E. and Jones, K. S., J. Appl. Phys., 73, 955 (1993).Google Scholar
7. Skarlatos, D., Omri, M., Claverie, A. and Tsoukalas, D., J. Electrochem. Soc. 146 (6), 2276 (1999)Google Scholar
8. Skarlatos, D., Tsoukalas, D., Giles, L. F. and Claverie, A., J. Appl. Phys., 87 (3), 1103 (2000)Google Scholar
9. Tsoukalas, D, Skarlatos, D. and Stoemenos, J., J. Appl. Phys., 87 (12), 8380 (2000)Google Scholar
10. Pan, G. Z., Tu, K. N., and Prussin, S., J. Appl. Phys., 81, 78 (1997).Google Scholar