Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-07T04:09:50.426Z Has data issue: false hasContentIssue false

Anisotropy and inhomogeneity measurement of the transport properties of spark plasma sintered thermoelectric materials

Published online by Cambridge University Press:  03 January 2013

A. Jacquot
Affiliation:
Fraunhofer-IPM, Thermoelectric Systems department, Heidenhofstraße 8, 79110 Freiburg, Germany.
M. Rull
Affiliation:
Instituto de Microelectrónica de Madrid, C/ Isaac Newton 8. Tres Cantos, 28760 Madrid, Spain.
A. Moure
Affiliation:
Instituto de Ceramica y Vidrio, C/ Kelsen, 5 Madrid 28049, Spain.
J.F. Fernandez-Lozano
Affiliation:
Instituto de Ceramica y Vidrio, C/ Kelsen, 5 Madrid 28049, Spain.
M. Martin-Gonzalez
Affiliation:
Instituto de Microelectrónica de Madrid, C/ Isaac Newton 8. Tres Cantos, 28760 Madrid, Spain.
M. Saleemi
Affiliation:
Functi Instituto de Ceramica y Vidrio onal Materials Division, KTH Royal Institute of Technology, Kista-Stockholm, Sweden.
M.S. Toprak
Affiliation:
Functi Instituto de Ceramica y Vidrio onal Materials Division, KTH Royal Institute of Technology, Kista-Stockholm, Sweden.
M. Muhammed
Affiliation:
Functi Instituto de Ceramica y Vidrio onal Materials Division, KTH Royal Institute of Technology, Kista-Stockholm, Sweden.
M. Jaegle
Affiliation:
Fraunhofer-IPM, Thermoelectric Systems department, Heidenhofstraße 8, 79110 Freiburg, Germany.
Get access

Abstract

We report on the development and capabilities of two new measurement systems developed at Fraunhofer-IPM. The first measurement system is based on an extension of the Van der Pauw method and is suitable for cube-shaped samples. A mapping of the electrical conductivity tensor of a Skutterudite-SPS samples produced at the Instituto de Microelectrónica de Madrid is presented. The second measurement system is a ZTmeter also developed at the Fraunhofer-IPM. It enables the simultaneous measurement of the electrical conductivity, Seebeck coefficient and thermal conductivity up to 900 K of cubes at least 5x5x5 mm3 in size. The capacity of this measurement system for measuring the anisotropy of the transport properties of a (Bi,Sb)2Te3SPS sample produced by KTH is demonstrated by simply rotating the samples.

Type
Articles
Copyright
Copyright © Materials Research Society 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jacquot, A., Thomas, J., Schumann, J., Jägle, M., Böttner, H., Gemming, T., Schmidt, J. and Ebling, D., J. Mater. Res. 26, 1773 (2011).CrossRefGoogle Scholar
Yan, X., Poudel, B., Ma, Y., Liu, W. S., Joshi, G., Wang, H., Lan, Y., Wang, D., Chen, G. and Ren, Z. F., Nano Lett. 10, 3373 (2010).CrossRefGoogle Scholar
Situmorang, M. and Goldsmid, H.G., Phys. Stat. Sol. (b) 134, K83 (1986).CrossRefGoogle Scholar
Jacquot, A., Bayer, B., Winkler, M., Böttner, H., Jaegle, M., J. Solid State Chem. 193, 105 (2012).CrossRefGoogle Scholar
Jacquot, A., König, J., Bayer, B., Ebling, D., Schmidt, J., Jaegle, M., Coupled theoretical and experimental investigation of the role of impurity levels and concentration in Bi2Te3 and PbTe based materials at high temperature, 8th European Conference on Thermoelectrics, Como, September 22-24, P112 (2010).Google Scholar
Storder, M., Langhammer, H.T., phys. Stat. sol (b) 117, 329 (1983).CrossRefGoogle Scholar
Fleischmann, Von H., Z. Naturforschg 16 a, 765 (1961).Google Scholar
van der Pauw, L.J., Philips Res. Repts 13, 1 (1958).Google Scholar
Koon, D.W., Rev. Sci. Instrum. 60, 271 (1989).CrossRefGoogle Scholar
Kasl, C. and Hoch, M.J.R., Rev. Sci. Instrum. 76, 033907 (2005).CrossRefGoogle Scholar
Kazani, I., De Mey, G., Hertleer, C., Banaszczyk, J., Schwarz, A., Guxho, G. and Van Langenhove, L., Text. Res. J. 0(01) 1 (2011).Google Scholar
Kleiza, J. and Kleiza, V., Lith. J. Phys. 455 333 (2005).CrossRefGoogle Scholar
Sato, Y. and Sato, S., Jpn. J. Appl. Phys. Vol. 40, 4256 (2001).CrossRefGoogle Scholar
Bierwagen, O., Pomraenke, R., Eilers, S., and Masselink, W. T., Phys. Rev. B 70, 165307 (2004).CrossRefGoogle Scholar
de Boor, J., Schmidt, V., Adv. Mater. 22, 4303 (2010).CrossRefGoogle Scholar
Jacquot, A., Jaegle, M., Pernau, H.-F., König, J., Tarantik, K., Bartholomé, K., Böttner, H., “Simultaneous measurement of the thermoelectric properties with the new IPM-ZTMeter”, 9th European Conference on Thermoelectrics, Thessaloniki, September 28-30, C-14-P (2011). Google Scholar
Jaegle, M., Bartel, M., Ebling, D., Jacquot, A. and Böttner, H., “Multiphysics simulation of thermoelectric systems”, Proceedings of the 6th European Conference on Thermoelectrics, July 2-4, Paris, 0-27-1 (2008).Google Scholar
Ebling, D., Jaegle, M., Bartel, M., Jacquot, A. and Böttner, H., Journal of Electronic Materials 38 Issue 7, 1456 (2009).CrossRefGoogle Scholar
Saleemi, M., Toprak, M. S., Li, S., Johnsson, M. and Muhammed, M., J. Mater. Chem. 22, 725 (2012).CrossRefGoogle Scholar
Martin-Lopez, R., Lenoir, B., Dauscher, A., Scherrer, H. and Scherrer, S., Solid State Commun. 1085, 285 (1998).CrossRefGoogle Scholar
Winkler, M., Ebling, D., Böttner, H., Kirste, L., “Sputtered n-type Soft Super Lattice Thermoelectric Layers Based on Bi2Te3/(Bi, Sb)2Te3 Created by Nanoalloying”, Proceedings of the 8th European Conference on Thermoelectrics, September 22–24, Como, 26 (2010). Google Scholar