Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-21T06:35:01.786Z Has data issue: false hasContentIssue false

Anisotropic Structural and Electronic Properties of InGaAs/GaAs Heterojunctions

Published online by Cambridge University Press:  22 February 2011

R.S. Goldman
Affiliation:
University of California at San Diego, La Jolla, CA 92093-0407
K. Rammohan
Affiliation:
University of Southern California, Los Angeles, CA 90089-0241
A. Raisanen
Affiliation:
Xerox Webster Research Center, Webster, NY 14580
M. Goorsky
Affiliation:
University of California at Los Angeles, Los Angeles, CA 90024
L.J. Brillson
Affiliation:
Xerox Webster Research Center, Webster, NY 14580
D.H. Rich
Affiliation:
University of Southern California, Los Angeles, CA 90089-0241
H.H. Wieder
Affiliation:
University of California at San Diego, La Jolla, CA 92093-0407
K.L. Kavanagh
Affiliation:
University of California at San Diego, La Jolla, CA 92093-0407
Get access

Abstract

We have investigated the structural and electronic properties of partially strain-relaxed InxGal-xAs/GaAs heterojunctions, grown by molecular beam epitaxy (MBE) on both misoriented and nominally flat (001) GaAs substrates. Mobility measurements using Hall bars aligned along the [110] and [110] in-plane directions reveal an asymmetry in bulk InGaAs electron mobility. This asymmetry is correlated with an anisotropic bulk strain relaxation and interfacial misfit dislocation density, determined from high-resolution x-ray rocking curves (XRC), as well as a polarization anisotropy in cathodoluminescence (CL).

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Olsen, G.H., Abrahams, M.S., and Zamerowski, T.J., J. Electrochem. Soc. 121, 1650 (1974).Google Scholar
2 Fitzgerald, E.A., Ast, D.G., Kirchner, P.D., Pettit, G.D., and Woodall, J.M., J. Appl. Phys. 63, 693 (1988); K.L. Kavanagh, M.A. Capano, L.W. H-Iobbs, J.C. Barbour, P.M.J. Maree, W. Schaff, J.W. Mayer, G.D. Pettit, J.A. Stroscio, and R.M. Feenstra, J. Appl. Phys., 64, 4843 (1988); B.A. Fox and W.A. Jesser, J. Appl. Phys., 68, 2739 (1990).Google Scholar
3 Grundmann, M., Liener, U., Bimberg, D., Fischer-Colbrie, A., and Miller, J.N., Appl. Phys. Lett. 55, 1765 (1989); T. Okada, R.V. Kruzelecky. G.C. Weatherly, D.A. Thompson, and B.J. Robinson, >Appl. Phys. Lett. 63, 3194 (1993).Appl.+Phys.+Lett.+63,+3194+(1993).>Google Scholar
4 Duga, J.J., J. Appl. Phys. 33, 169 (1962).Google Scholar
5 Esquivel, A.L., Sen, S., and Lin, W.N., J. Appl. Phys. 47, 2588 (1976)Google Scholar
6 Sun, Q., Lacelle, C., Morris, D., Buchanan, M., Marshall, P., Chow-Chong, P., and Roth, A.P., Appl. Phys. Lett. 59, 1359 (1991).Google Scholar
7 Radulescu, D.C., Wicks, G.W., Schaff, W.J., Calawa, A.R., and Eastman, L.F., J. Appl. Phys. 61, 2301 (1987); 62, 954 (1987).Google Scholar
8 Webb, C., Eckstein, J.N., and Desai, Y.M., J. Cryst. Growth 111, 309 (1991); S.R. Bahl, W.J. Azzam, and J.A. del Alamo, J. Cryst. Growth, 111. 479 (1991).Google Scholar
9 Chen, J., Fernandez, J.M., and Wieder, H.H., Mater. Res. Soc. Symp. Proc. 263, 377 (1992).Google Scholar
10 Schweizer, O., Kohler, K., Rothemund, W., and Ganser, P., Appl. Phys. Lett 59. 2736 (1991); 60, 469 (1992).Google Scholar
11 Morris, D., Sun, Q., Lacelle, C., Roth, A.P., Brebner, J.L., Simard-Normandin, M., and Rajan, K., J. Appl. Phys. 71, 2321 (1992).Google Scholar
12 Bennett, B.R. and Alamo, J.A. del, Appl. Phys. Lett. 58, 2979 (1991).Google Scholar
13 Lee, C.P., Zucca, R., and Welch, B.M., Appl. Phys. Lett. 37, 311 (1980); N. Yokoyama, H. Onodera, T. Ohnishi, and A. Shibatomi, Appl. Phys. Lett., 42, 270 (1983); M.F. Chang, C.P. Lee, P.M. Asbeck, R.P. Vahrenkamp, and C.G. Kirkpatrick, Appl. Phys. Lett., 45, 279 (1984).Google Scholar
14 Asbeck, P.M., Lee, C.-P., and Chang, M.-C.F., IEEE Trans. Electr. Dev. ED–31, 1377 (1984).Google Scholar
15 Radulescu, D.C., Wicks, G.W., Schaff, W.J., Calawa, A.R., and Eastman, L.F., J. Appl. Phys. 62, 954 (1987); 63, 5115 (1988).Google Scholar
16 Tsui, R.K., Curless, J.A., Kramer, G.D., Peffley, M.S., and Rode, D.L., J. Appl. Phys. 58, 2570 (1985); R.K. Tsui, J.A. Curless, G.D. Kramer, M.S. Peffley, and G.W. Wicks, J. Appl. Phys., 59, 1508 (1986).Google Scholar
17 Radulescu, D.C., Schaff, W.J., WIcks, G.W., Calawa, A.R., and Eastman, L.F., Appl. Phys. Lett. 51, 2248 (1987).Google Scholar
18 Brown, A.S., Mislhra, U.K., Henige, J.A., and Delaney, M.J., J. Appl. Phys. 64, 3476 (1988).Google Scholar
19 Liliental-Weber, Z., Chen, Y., Werner, P., Zakharov, N., Swider, W., and Washburn, J., J. Vac. Sci. Technol. B 11, 1379 (1993).Google Scholar
20 Roth, A.P., Morris, D., Sun, Q., Lacelle, C., Wasilewski, Z., Maigne, P., and Bensaoula, A., J. Cryst. Growth 120, 212 (1992).Google Scholar
21 Wie, C.R., Kim, H.M., and Lau, K.M., SPIE Proc. 877, 41 (1988).Google Scholar
22 Rich, D.H., Ksendzov, A., Terhune, R.W., Grunthaner, F.J., Wilson, B.A., Shen, H., Dutta, M., Vernon, S.M., and Dixon, T.M., Phys. Rev. B 43, 6836 (1991).Google Scholar
23 Halliwell, M. and Bassignana, I., MRS Short Course C-23, 1992 Fall Meeting.Google Scholar
24 Gay, P.. Hirsch, P.B., and Kelly, A., Acta Metallurgica 1, 315 (1953).Google Scholar
25 Chang, J.C.P. and Kavanagh, K.L., Mater. Res. Soc. Symp. Proc. 263, 457 (1992).Google Scholar
26 Pollak, F.H. and Cardona, M., Phys. Rev. 172, 816 (1968).Google Scholar
27 Ramnmohan, K., Rich, D.H., Goldman, R.S., Chen, J., Wieder, H.H., and Kavanagh, K.L., submitted for publication.Google Scholar
28 Chandra, A., Wood, C.E.C., Woodard, D.W., and Eastman, L.F., Solid State Electr. 22, 645 (1979).Google Scholar
29 Thobel, J.L., Baudry, L., Cappy, A., Bourel, P., and Fauquembergue, R., Appl. Phys. Lett. 56, 346 (1990).Google Scholar
30 Nye, J.F., Physical Properties of Crystals (Oxford University Press, Oxford, 1979), p. 124.Google Scholar