Hostname: page-component-848d4c4894-pjpqr Total loading time: 0 Render date: 2024-06-24T02:32:57.763Z Has data issue: false hasContentIssue false

Angular Dependence of the Magnetoresistance in (TMTSF)2C1O4

Published online by Cambridge University Press:  25 February 2011

M.J. Naughton
Affiliation:
State University of New York at Buffalo, Buffalo, N.Y. 142 60
O.H. Chung
Affiliation:
State University of New York at Buffalo, Buffalo, N.Y. 142 60
L.Y. Chiang
Affiliation:
Exxon Research and Engineering, Annandale, N.J. 08801
S.T. Hannahs
Affiliation:
Francis Bitter National Magnet Lab, M.I.T., Cambridge, MA 02139
J.S. Brooks
Affiliation:
Boston University, Boston, MA 02215
Get access

Extract

We discuss recent low temperature results on the magnetoresistance of (TMTSF)2C104 in the low field metallic and the moderate field FISDW phases. From constant field rotations in a plane perpendicular to the highest conducting a-axis, we observe oscillatory resistance behavior along certain orientations at al. fields measured. While at odds with usual considerations of resistance anisotropy due to the crystal structure, this feature may be consistent with the recent predictions of Lebed and Bak[1,2], wherein the oscillatory electron trajectories along the b* and c* directions become commensurate near particular “magic” orientations in the magnetic field. We compare our preliminary data with the Lebed-Bak model, finding some qualitative agreement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lebed, A.G., Zh. Eksp. Teor. Fiz. 43, 137 (1986) [Sov. JETP Lett. 43, 174 (1986)].Google Scholar
2. Lebed, A.G. and Bak, P., Phys. Rev. Lett. 63, 1315 (1989).CrossRefGoogle Scholar
3. Yan, X., Naughton, M.J., Cheema, O.S., Chamberlin, R.V., Hsu, S.Y., Chiang, L.Y., Chaikin, P.M., Sol. State Commun. 66, 905 (1988).CrossRefGoogle Scholar
4. Naughton, M.J., Brooks, J.S., Chiang, L.Y., Chamberlin, R.V., Chaikin, P.M., Phys. Rev. Lett. 55, 969 (1985) andCrossRefGoogle Scholar
Naughton, M.J., Chamberlin, R.V., Yan, X., Hsu, S.Y., Chiang, L.Y., Azbel, M. Ya., Chaikin, P.M., Phys. Rev. Lett. 61, 621 (1988).CrossRefGoogle Scholar
5. Kwak, J.F., Schirber, J.E., Greene, R.L., Engler, E.M., Mol. Cryst. Liq. Cryst. 79, 111 (1982).CrossRefGoogle Scholar
6. Brusetti, R., Bechgaard, K., Lonzarich, G., Friend, R.H., J. Phys. (Paris) 44, C31055 (1983).Google Scholar
7. Murata, K., Bando, H., Kajimura, K., Ishiguro, T., Anzai, H., Mol. Cryst. Liq. Cryst. 119, 131 (1985).CrossRefGoogle Scholar
8. Chaikin, P.M., Brooks, J.S., Chamberlin, R.V., Goshorn, R., Johnston, D.C., Naughton, M.J., Yan, X., Physica 143 B 383 (1986).Google Scholar
9. Boebinger, G.S., Montambaux, G., Kaplan, M., Haddon, R.C., Chichester, S.V., Chiang, L.Y. (unpublished).Google Scholar