Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-19T05:39:02.851Z Has data issue: false hasContentIssue false

Analytical Electron Microscopy of Precipitates in Ion-Implanted Mgal2O4 Spinel

Published online by Cambridge University Press:  16 February 2011

N. D. Evans
Affiliation:
Oak Ridge Institute for Science and Education, PO Box 117, Oak Ridge, TN 37831-0117
S. J. Zinkle
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831–6376
J. Bentley
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831–6376
Get access

Abstract

Analytical electron microscopy (AEM) has been used to investigate precipitates in MgAl2O4 spinel implantated with Al+, Mg+, or Fe2+ ions. Experiments combining diffraction, energy dispersive X-ray spectrometry (EDS), electron energy-loss spectrometry (EELS), and energy-filtered imaging were employed to identify and characterize precipitates observed in the implanted ion region. Diffraction studies suggested these are metallic aluminum colloids, although EELS and energy-filtered images revealed this to be so only for the Al+ and Mg+ implantations, but not for Fe2+ ion implantations. Multiple-least-squares (MLS) fitting of EELS plasmon spectra was employed to quantify the volume fraction of metallic aluminum in the implanted ion region. Energy-filtered plasmon images of the implanted ion region clearly show the colloid distribution in the Al+ and Mg+ implanted spinel. Energy-filtered images from the Fe2+ ion implanted spinel indicate that the features visible in diffraction contrast cannot be associated with either metallic aluminum or iron-rich precipitates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Clinard, F. W. Jr, Hurley, G. F., and Hobbs, L. W., J. Nucl. Mater. 108&109, 655 (1982).Google Scholar
2. Parker, C. A., Hobbs, L. W., Russell, K. C., and Clinard, F. W. Jr, J. Nucl. Mater. 133&134, 741 (1985).Google Scholar
3. Zinkle, S. J., J. Am. Ceram. Soc. 72, 1343 (1989).Google Scholar
4. Zinkle, S. J. and Kojima, S., Nucl. Instru. Meth. B 46, 165 (1990).Google Scholar
5. Zinkle, S. J., Nucl. Instr. Meth. B 91, 234 (1994).Google Scholar
6. Egerton, R. F., Electron Energy-Loss Spectroscopy in the Electron Microscope, (Plenum Press, New York, 1986), p. 229.Google Scholar
7. Krivanek, O. L., Gubbens, A. J., Dellby, N., and Meyer, C. E., Microsc. Microanal. Microstruct. 3, 187 (1992).Google Scholar
8.ibid., reference 6, p. 257.Google Scholar
9. Evans, N. D., Zinkle, S. J., Bentley, J., and Kenik, E. A., in Proc. 49th Ann. Meet. Electron Microsc. Soc. Amer., Bailey, G. W., and Hall, E. L., eds., (San Francisco Press, San Francisco, 1991), p. 728.Google Scholar
10. Romano, A., Applied Statistics for Science and Industry, (Allyn and Bacon, Inc., Boston, 1977), Chapter 4.Google Scholar
11. Bevington, P. R., Data Reduction and Error Analysis for the Physical Sciences, (McGraw-Hill, New York, 1969), Chapter 5.Google Scholar
12. Manning, I. and Mueller, G. P., Comput. Phys. Commun. 7, 85 (1974).Google Scholar
13. Evans, N. D. and Wang, Z. L. in Proc. 50th Ann. Meet. Electron Microsc. Soc. Amer., Bailey, G. W., Bentley, J., and Small, J. A., eds., (San Francisco Press, San Francisco, 1992) p. 1256.Google Scholar
14. Spaulding, D. R. and Metherell, A. J., Phil. Mag. 18, 41 (1968).Google Scholar