Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-22T16:41:38.643Z Has data issue: false hasContentIssue false

Analysis of the Physical Origin of the blue shift of the Optical Bandgap of a-Si:H based Multilayers

Published online by Cambridge University Press:  16 February 2011

Norbert Bernhard
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Gottfried H. Bauer
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Get access

Abstract

The physical origin of the blue shift of the optical Taue bandgap of compositional multilayers of a-Si:H and its alloys with Ge, C or N is analysed. It is shown that for multilayers with bandgap differences up to 0.7 eV between well and barrier Material, the effect can be understood completely classical in terms of the effective medium approximation, when the mean composition of the multilayer films is not kept constant. For the variation of both the electronic well and barrier widths a shift of the Taue bandgap is theoretically expected. It is of the same order of magnitude as the effect which is experimentally observed. Interfacial transition layers can account for a blue shift also for higher bandgap differences, as usually the case in a-Si:H/a-SiNx:H Multilayers, and when the mean composition of the multilayers is kept constant.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abeles, B. and Tiedje, T., Phys. Rev. Lett. 21, 2003 (1983)CrossRefGoogle Scholar
2. Miyazaki, S. and Hirose, M., in Amorphous and Microcrystalline Semiconductor Devices, Vol. 1, edited by Kanicki, J. (Artech House, Boston, 1991) pp. 167194 Google Scholar
3. Collins, R. W. and Huang, C.-Y., Phys. Rev. B 34, 2910 (1986)CrossRefGoogle Scholar
4. Beaudoin, M., Meunier, M. and Arsenault, C. J., J. Non-Cryst. Sol. 137&138, 1099 (1991); Phys. Rev. B 47, 2197 (1993)CrossRefGoogle Scholar
5. Bernhard, N., Dittrich, H. and Bauer, G. H., J. Non-Cryst. Sol. 137&138, 1103 (1991)CrossRefGoogle Scholar
6. Ugur, H., Johanson, R. and Fritzsche, H., in Tetrahedrally Bonded Amorphous Semiconductors, edited by Adler, D. and Fritzsche, H. (Plenum Press, New York, 1985), pp. 425431 CrossRefGoogle Scholar
7. Aspnes, D. E., Thin Solid Films 89, 249 (1982)CrossRefGoogle Scholar
8. Bernhard, N., PhD thesis, Stuttgart University, 1994 Google Scholar
9. Bruggeman, D. A. G., Ann. Phys. 24 (Leipzig), 636 (1935)CrossRefGoogle Scholar
10. Bernhard, N. and Bauer, G. H., in Amorphous Silicon Technology, edited by Thompson, M. J. et al. (Mater. Res. Soc. Proc. 258, Pittsburgh, 1992) pp. 541546 Google Scholar
11. Bernhard, N., Frank, B., Movaghar, B. and Bauer, G. H., Phil. Mag. B., in printGoogle Scholar