Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-25T13:52:27.586Z Has data issue: false hasContentIssue false

Analysis of Optical Gain of Strained Wurtzite InxGa1-xN/GaN Quantum Well Lasers

Published online by Cambridge University Press:  10 February 2011

T. C. Chong
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10 Kent Ridge Crescent, S 119260, Singapore.
Y. C. Yeo
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10 Kent Ridge Crescent, S 119260, Singapore.
M. F. Li
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10 Kent Ridge Crescent, S 119260, Singapore.
W. J. Fan
Affiliation:
Centre for Optoelectronics, Department of Electrical Engineering, National University of Singapore, 10 Kent Ridge Crescent, S 119260, Singapore.
Get access

Abstract

The valence subband structures, density-of-states, and optical gain of (0001) wurtzite (WZ) InxGa1-xN/GaN quantum wells (QWs) are studied using a numerical approach without analytical approximations. We used the effective-mass parameters of GaN and InN derived using the Empirical Pseudopotential Method. By varying the well width and mole fraction of In in the well material, the effects of quantum confinement and compressive strain are studied. A narrower well width and a higher In mole fraction in the well lead to TE enhancement and TM suppression of the optical gain. From the relationship between the optical gain and the radiative current density, we obtain the transparent current density for a single QW to be 200 A/cm2. Further, we analyze the InxGa1-xN/GaN/AlGaN separate confinement heterostructure multiple-QW laser structure. It is shown that a suitable combination of well width and number of QWs should be selected in optimizing the threshold current density in such MQW lasers

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Jpn. J. Appl. Phys. 36, pp. L1059 (1997).10.1143/JJAP.36.L1059Google Scholar
2. Akasaki, I., Amano, H., Sota, S., Sakai, H., Tanaka, T., and Kaike, M., Jpn. J. Appl. Phys. 34, pp. L1517 (1995).10.7567/JJAP.34.L1517Google Scholar
3. Suzuki, M., Uenoyama, T., and Yanase, A., Phys. Rev. B 52, pp. 8132 (1995); M. Suzuki and T. Uenoyama, Jpn. J. Appl. Phys. 34, pp. 3442 (1995).10.1103/PhysRevB.52.8132Google Scholar
4. Yeo, Y. C., Chong, T. C., and Li, M. F., to appear in the J. Appl. Phys. (1998).Google Scholar
5. Chuang, S. L. and Chang, C. S., Phys. Rev. B 54, pp. 2491 (1996).10.1103/PhysRevB.54.2491Google Scholar
6. Martin, G., Botchkarev, A., Rockett, A., and Mockoc, H., Appl. Phys. Lett. 68, pp. 2541, (1996).10.1063/1.116177Google Scholar
7. Bir, G. L. and Pikus, G. E., Symmetry and Strain-Induced Effects in Semiconductor (Wiley, 1972).Google Scholar
8. Fan, W. J., Li, M. F., Chong, T. C., and Xia, J. B., J. Appl. Phys. 80, pp. 3471 (1996).10.1063/1.363217Google Scholar
9. Chuang, S. L., IEEE J. Quantum Electron. 32, pp. 1791 (1996).10.1109/3.538786Google Scholar
10. Nakamura, S., MRS Internet J. Nitride Semiconductor Research 2, 5 (1997).10.1557/S1092578300001319Google Scholar
11. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., Matsushita, T., Sugimoto, Y., and Kiyoku, H., Jpn. J. Appl. Phys. 36, pp. L1059 (1997).Google Scholar
12. Chow, W. W., Wright, A. F., Girndt, A., Jahnke, F., and Koch, S. W., Appl. Phys. Lett. 71, pp. 2608 (1997).10.1063/1.120155Google Scholar