Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T02:02:53.858Z Has data issue: false hasContentIssue false

Analysis of InP Passivated with Thiourea/Ammonia Solutions and Thin CdS Films

Published online by Cambridge University Press:  03 September 2012

H. M. Dauplaise
Affiliation:
USAF Rome Laboratory, Optical Components Branch, Hanscom Air Force Base, MA 01731
A. Davis
Affiliation:
USAF Rome Laboratory, Optical Components Branch, Hanscom Air Force Base, MA 01731
K. Vaccaro
Affiliation:
USAF Rome Laboratory, Optical Components Branch, Hanscom Air Force Base, MA 01731
W. D. Waters
Affiliation:
USAF Rome Laboratory, Optical Components Branch, Hanscom Air Force Base, MA 01731
S. M. Spaziani
Affiliation:
USAF Rome Laboratory, Optical Components Branch, Hanscom Air Force Base, MA 01731
E. A. Martin
Affiliation:
USAF Rome Laboratory, Optical Components Branch, Hanscom Air Force Base, MA 01731
J. P. Lorenzo
Affiliation:
USAF Rome Laboratory, Optical Components Branch, Hanscom Air Force Base, MA 01731
Get access

Abstract

The use of thiourea/ammonia pre-treatments on (100) InP, followed by chemical bath deposition (CBD) of CdS thin films (∼ 30 Å), with low-temperature, low-pressure chemical vapor deposited SiO2 has been shown to produce metal-insulator-semiconductor (MIS) samples with near-ideal capacitance-voltage (C-V) response. Here, we report on x-ray photoelectron spectroscopy (XPS) analysis of the near-surface of InP following pre-treatment and CdS deposition. The pre-treatment was shown by XPS to form an indium sulfide layer and effectively remove native oxides from the InP surface. The subsequent deposition of CdS on a sulfur-passivated surface forms a stable layer which protects the substrate from oxidation during SiO2 chemical vapor deposition. MIS samples prepared using the pre-treatment without CdS deposition showed improved C- V response, while samples prepared with both the pre-treatment and CdS deposition showed a dramatic reduction in the density of interface states.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Iyer, R., Chang, R.R., Lile, D.L., Appl. Phys. Lett. 53, 134 (1988).Google Scholar
2 Kwok, R.W.M., Jin, G., So, B. K. L., Hui, K.C., Huang, L., Lau, W. M., Hsu, C. C., Landheer, D., J. Vac. Sci. Technol. A 13 (3), 652(1995).Google Scholar
3 Vaccaro, K., Dauplaise, H.M., Davis, A., Spaziani, S.M., Lorenzo, J.P., Appl. Phys. Lett. 67 (4), 527 (1995).Google Scholar
4 Dauplaise, H.M., Vaccaro, K., Davis, A., Ramseyer, G.O., Lorenzo, J. P., J. Appl. Phys. 80 (5), 2873 (1996).Google Scholar
5 Bennett, B.R., Lorenzo, J.P., Vaccaro, K., Davis, A., J. Electrochem. Soc. 134 (10), 2517 (1987).Google Scholar
6 R. Castagné and Vapaille, A., Surface Sci. 28, 157 (1971).Google Scholar
7 Chastain, J., Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, (1992).Google Scholar
8 Lau, W.M., Kwok, R.W.M., Ingrey, S., Surface Science 271, 579 (1992).Google Scholar
9 Tao, Y., Yelon, A., Sacher, E., Lu, Z.H., Graham, M.J., Appl. Phys. Lett. 60 (21), 2669 (1992).Google Scholar
10 R. Ortega-Borges and Lincot, D., J. Electrochem. Soc. 240 (12), 3464 (1993).Google Scholar
11 NIST Standard Reference Database 20, N1STX-ray Photoelectron Spectroscopy Database, Version 1.0, compiled by CD. Wagner, U.S. Dept of Commerce, Gaithersburg, MD (1989).Google Scholar
12 Weimer, P., Proc. IRE 50, 1462 (1962).Google Scholar