Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-01T07:52:07.374Z Has data issue: false hasContentIssue false

Analysis of Electron Transport in a High-Mobility Freestanding GaN Substrate Grown by Hydride Vapor-Phase Epitaxy

Published online by Cambridge University Press:  21 March 2011

F. Yun*
Affiliation:
Dept. of Electrical Engineering and Physics, Virginia Commonwealth University, Richmond, VA 23284
H. Morkoc
Affiliation:
Dept. of Electrical Engineering and Physics, Virginia Commonwealth University, Richmond, VA 23284
D. L. Rode
Affiliation:
Washington University, Department of Electrical Engineering, St. Louis, Missouri 63130
K. T. Tsen
Affiliation:
Department of Physics, Arizona State University, Tempe, AZ 85287
L. Farina
Affiliation:
Physics Department, University of Michigan, Ann Arbor, MI 48109
C. Kurdak
Affiliation:
Physics Department, University of Michigan, Ann Arbor, MI 48109
S. S. Park
Affiliation:
Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, Korea440-600
K. Y. Lee
Affiliation:
Samsung Advanced Institute of Technology, P.O. Box 111, Suwon, Korea440-600
*
*Corresponding author. Electronic mail: fyun@mail1.vcu.edu
Get access

Abstract

Semiconductor nitrides grown on substrates with a large lattice mismatch typically contain extended and point defects that prevent the full potential of this material system from being attained. Among allthe substrate options explored so far, freestanding GaN templates appear ideal for homoepitaxial growth of GaN films. To this end, hydride vapor-phase epitaxial (HVPE) grown GaN templates with a thickness of more than 200 μm were thermally lifted off from the sapphire substrate and mechanically polished. The defect densityof such a template is expected to be non-uniform in the growth direction, especially near the back surface which was in close vicinity of the sapphire substrate. We, therefore, studied the transport properties of this template before and after the removal of a 30 μm region from the back-side. For as-prepared GaN, Hall mobilities of 1100 cm2/V-s and 6800 cm2/V-s were obtained at 295 K and 50 K, respectively. A simultaneous fitting of mobility and carrier concentration was used to quantify the contribution ofdifferent scattering mechanisms. When the backside was etched by ∼30 μm, Hall mobilities improved to 1200 cm2/V-s at 295 K and 7385 cmsup2/V-s at 48 K, respectively. A numerical solution of the Boltzmann transport equation (BTE) that deals with the inelastic nature of electron scattering by polar optical mode was employed to determine the acceptor concentration. Raman spectroscopy was employed to obtain LO and TO phonon energies, which were then used in the above-mentioned calculations. The best fittings of the mobility and carrier concentration data yield an average acceptor concentration of 4.9×1015 cm-3 and a donor concentration of 2.1×1016 cm-3 for the as-prepared GaN. The average acceptor concentration decreased to 2.4×1015 cm-3 after etching of the backside, which confirms that the etched-away region contained higher density of defects. The donor activation energy is derived to be 25.2 meV. Our analysis demonstrated high quality of the freestanding GaN substrate with the highest reported electron mobility for wurtzite GaN.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mohammad, S. N. and Morkoç, H., Progress in Quantum Electronics 20 (5&6), 361(1996).Google Scholar
2 Morkoç, H., Nitride Semiconductors and Devices, Springer, Heidelberg (1999).Google Scholar
3See for example, Jain, S. C., Willander, M., Narayan, J., Overstraeten, R. Van, J. Appl. Phys. 87, 963(2000).Google Scholar
4 Look, D. C., Reynolds, D. C., Hemsky, J. W., Sizelove, J. R., Jones, R. L., and Molnar, R. J., Phys. Rev. Lett. 79, 2273(1997).Google Scholar
5 Heying, B., Smorchkova, I., Poblenz, C., Elsass, C., Fini, P., and Baars, S. Den, Mishra, U., and Speck, J. S., Appl. Phys. Lett. 77, 2885(2000).Google Scholar
6 Manfra, M. J., Pfeiffer, L. N., West, K. W., Stormer, H. L., Baldwin, K. W., Hsu, J. W. P., Lang, D. V., and Molnar, R. J., Appl. Phys. Lett. 77, 2888(2000).Google Scholar
7 Look, D. C.: Electrical Characterization of GaAs Materials and Devices, Wiley, New York, 1989.Google Scholar
8 Look, D. C. and Molnar, R. J., Appl. Phys. Lett. 70, 3377(1997).Google Scholar
9 Rode, D. L., Semiconductors and Semimetals, (Academic, New York 1975), Vol.10, pp. 190.Google Scholar
10 Kelly, M. K., Vando, R. P., Phanse, V. M., Gorgens, L., Ambacher, O., Stutzmann, M., Jpn. J. Appl. Phys. Part 2, 38, L217(1999).Google Scholar
11 Yun, F., Reshchikov, M. A., Jones, K. M., Visconti, P., Morkoç, H., Park, S. S. and Lee, K. Y., Solid-State Electronics, 44, 2225(2000).Google Scholar
12 Jasinski, J., Swider, W., Liliental-Weber, Z., Visconti, P., Jones, K. M., Reshchikov, M. A., Yun, F., Morkoç, H., Park, S. S. and Lee, K. Y., Appl. Phys. Lett. In press, 2001.Google Scholar
13 Fang, Z-Q., Look, D. C., Visconti, P., Wang, D-F., Lu, C-Z., Yun, F., Morkoç, H., Park, S. S., and Lee, K. Y., Appl. Phys. Lett. 78, 2178(2001).Google Scholar
14 Lin, M. E., Ma, Z., Huang, F. Y., Fan, Z. F., Allen, L. H., and Morkoç, H., Appl. Phys. Lett. 64, 1003(1994).Google Scholar
15 Ehrenreich, H., J. Phys. Chem. Solids 8, 130(1959).Google Scholar
16 Anderson, D. A., Aspley, N., Semicond. Sci. Technol. 1, 187(1986).Google Scholar
17 Erginsoy, C., Phys. Rev. 83, 879(1951).Google Scholar
18 Look, D. C., Sizelove, J. R., Keller, S., Wu, Y. F., Mishra, U. K., DenBaars, S. P., Solid State Commun. 102, 297(1997).Google Scholar
19 Hsu, L. and Walukiewicz, W., Phys. Rev. B56, 1520(1997).Google Scholar
20 Visconti, P., Jones, K. M., Reshchikov, M. A., Yun, F., Cingolani, r., Morkoç, H., Park, S. S., and Lee, K. Y., Appl. Phys. Lett. 77, 3743(2000).Google Scholar
21 Ng, H. M., Doppalapudi, D., Moustakas, T. D., Weimann, N. G., and Eastman, L. F., Appl. Phys. Lett. 73, 821(1998).Google Scholar
22 Zhu, Q. S. and Sawaki, N., Appl. Phys. Lett. 76, 1594(2000).Google Scholar
23 Wang, Y. J., Kaplan, R., Ng, H. K., Doverspike, K., Gaskill, D. K., Ikedo, T., Akasaki, I., and Amono, H., J. Appl. Phys. 79, 8007(1996).Google Scholar