Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-20T07:02:13.682Z Has data issue: false hasContentIssue false

Analysis of Charge Transport and Recombination Studied by Electrochemical Impedance Spectroscopy for Dye-sensitized Solar Cells With Atomic Layer Deposited Metal Oxide Treatment on TiO2 Surface

Published online by Cambridge University Press:  01 February 2011

Braden Bills
Affiliation:
blbills@jacks.sdstate.edu, South Dakota State University, Brookings, South Dakota, United States
Mariyappan Shanmugam
Affiliation:
Mariyappan.Shanmugam@sdstate.edu, South Dakota State University, Brookings, South Dakota, United States
Mahdi Farrokh Baroughi
Affiliation:
m.farrokhbaroughi@sdstate.edu, South Dakota State University, Brookings, South Dakota, United States
David Galipeau
Affiliation:
David.Galipeau@sdstate.edu, South Dakota State University, Brookings, South Dakota, United States
Get access

Abstract

The performance of dye-sensitized solar cells (DSSCs) is limited by the back-reaction of photogenerated electrons from the porous titanium oxide (TiO2) nanoparticles back into the electrolyte solution, which occurs almost exclusively through the interface. This and the fact that DSSCs have a very large interfacial area makes their performance greatly dependant on the density and activity of TiO2 surface states. Thus, effectively engineering the TiO2/dye/electrolyte interface to reduce carrier losses is critically important for improving the photovoltaic performance of the solar cell. Atomic layer deposition (ALD), which uses high purity gas precursors that can rapidly diffuse through the porous network, was used to grow a conformal and controllable aluminum oxide (Al2O3) and hafnium oxide (HfO2) ultra thin layer on the TiO2 surface. The effects of this interfacial treatment on the DSSC performance was studied with dark and illuminated current-voltage and electrochemical impedance spectroscopy (EIS) measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Junghanel, M.; Tributsch, H, C. R. Chimie 2006, 9, 652.Google Scholar
2 Sommeling, P. M.; O'Regan, B. C.; Haswell, R.; Smit, H. J. P.; Bakker, N. J.; Smits, J. J. T.; Kroon, J. M.; Van Roosmalen, J. A. M. J. Phys. Chem. B 2006, 110, 19191.Google Scholar
3 Kim, Y.; Yoo, B. J.; Vittal, R.; Lee, Y.; Park, N. G.; Kim, K. J. J. Power Sources 2008, 175, 914.Google Scholar
4 Tien, T. C., Pan, F. M., Wang, L. P., Lee, C. H., Tung, Y. L., Tsai, S. Y., Lin, C., Tsai, F. Y. and Chen, S. J., Nanotechnology 2009, 20, 305201 Google Scholar
5 Hamann, T. W., Farha, O. K. and Hupp, J. T., J. Phys. Chem. C 2008, 112, 19756.Google Scholar
6 Shanmugam, M., Baroughi, M. F., Galipeau, D., Thin Solid Films 2009 doi:10.1016/j.tsf.2009.08.033.Google Scholar
7 Fabregat-Santiago, F.; Bisquert, J.; Garcia-Belmonte, G.; Boschloo, G.; Hagfeldt, A. Sol. Energy Mater. Sol. Cells 2005, 87, 117.Google Scholar
8 Fabregat-Santiago, F.; Bisquert, J.; Palomares, E.; Otero, L.; Kuang, D. B.; Zakeeruddin, S. M.; Grätzel, M. J. Phys. Chem. C 2007, 111, 6550.Google Scholar
9 Wang, Q.; Ito, S.; Grätzel, M.; Fabregat-Santiago, F.; Mora-Seró, I.; Bisquert, J.; Bessho, T.; Imai, H. J. Phys. Chem. B 2006, 110, 25210.Google Scholar