Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-17T04:07:51.005Z Has data issue: false hasContentIssue false

An X-ray Absorption Spectroscopy Investigation of the Ta Site in Alpha-Recoil Damaged Natural Pyrochlores

Published online by Cambridge University Press:  28 February 2011

R.B. Greegor
Affiliation:
The Boeing Company, Seattle, WA 98124
F.W. Lytle
Affiliation:
The Boeing Company, Seattle, WA 98124
B.C. Chakoumakos
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, NTM 87131
G.R. Lumpkin
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, NTM 87131
R.C. Ewing
Affiliation:
Department of Geology, University of New Mexico, Albuquerque, NTM 87131
C.L. Spiro
Affiliation:
General Electric Company, Schenectady, NY 12345
J. Wong
Affiliation:
General Electric Company, Schenectady, NY 12345
Get access

Abstract

X-ray absorption spectroscopy has been used to investigate the Ta LIII and LI absorption edges of metamict and annealed pyrochlore minerals A1-2B2O6Y0-1. The LIII edge absorption spectra exhibit a pronounced doublet in primary absorption resonance for the annealed samples which have the pyrochlore structure. The doublet in the LIII edge resonance becomes less pronounced and for some samples even merges Into a singlet for the samples in the unannealed, fully damaged (metamict) state. The LIII edge resonance of the damaged samples closely resembles Ta205 or disordered manganotantalite (MnTaNbO6 ), while the LIII edge resonance for the annealed samples most closely resembles the synthetic pyrochlore KTaWO6·H20. These results are supported by the Ta LIIIedge x-ray absorption data. Fourier transforms of the Ta LIII edge x-ray absorption fine structure (EXAFS) show first neighbor Ta-0 bond lengths of 1.96 ± 0.05 A for the samples in the annealed and metamict state.

The complex structure of Ta205 is used as a model for the Ta-containing oxygen polyhedra in metamict pyrochlores, as it embodies some of the topologic features consistent with the reduction of long-range periodicity with increasing alpha-decay dose: 1) greater distortion of the primary coordination shell around Ta, 2) slightly increased mean second nearest-neighbor <Ta…X> distances, and 3) a wider distribution of second nearest-neighbor distances. These modifications are incorporated in a large unit cell with a b translation of 40 A.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Dosch, R.G., Headley, T.J., and Hlava, P., J. Am. Ceramic Soc. 67, 35 (1984).Google Scholar
2. Morgan, P.E.D., Shaw, T.M., and Pugar, E.A. in: Advances in Ceramics 8: Nuclear Waste Management I, Vol. 8, Wicks, G.G. and Ross, W.A., eds. (American Ceramic Society, Columbus, Ohio 1984) p. 209221.Google Scholar
3. Ringwood, A.E., Kesson, S.E., Ware, N.G., Hibberson, W., and Major, A., Nature 278, 278 (1979).Google Scholar
4. Haggerty, S.E. in: Ann. Rev. Earth Planet. Sci., Vol. 11, Wetherill, G.W., Albee, A.L., and Stehli, F.G., eds. (Annual Reviews Inc., Palo Alto, CA 1983) p. 133163.Google Scholar
5. Sinclair, W. and Ringwood, A.E., Geochemical J. 15, 219 (1981).Google Scholar
6. Ewing, R.C. and Headley, T.J., J. of Nuclear Mat. 119, 102 (1983).Google Scholar
7. Lumpkin, G.R. and Ewing, R.C., in Scientific Basis for Nuclear Waste Management - VIII, edited by Jantzen, C.M., Stone, J.A. and Ewing, R.C. (Materials Research Society, Pittsburgh, PA, 1985) pp. 647654.Google Scholar
8. Weber, W.J., Wald, J.W., and Matzke, Hj., in Scientific Basis for Nuclear Waste Management - VIII, Edited by Jantzen, C.M., Stone, J.A. and Ewing, R.C. (Materials Research Society, Pittsburgh, PA, 1985).Google Scholar
9. Wald, J.W. and Offerman, P., in Scientific Basis for Nuclear Waste Management - V, Edited by Lutze, V.W. (North Holland,New York, 1982) pp. 369378.Google Scholar
10. Clinard, F.W. Jr., Peterson, D.E., Rohr, D.L., and Roof, R.B., in Scientific Basis for Nuclear Waste Management - VI, Edited by Brookins, D.G. (North Holland, New York, 1983) pp. 437445.Google Scholar
11. Clinard, F.W. Jr., Rohr, D.L., and Roof, R.B., Nucl. Inst. and Methods Bl, 581 (1984).Google Scholar
12. Weber, W.J., Wald, J.W. and Matzke, Hj., Mat. Lett., 3, 173 (1985).Google Scholar
13. Weber, W.J., Wald, J.W. and Matzke, Hi., J. Nuc. Matl., 138, 196 (1986).CrossRefGoogle Scholar
14. Kelly, R., Nuc. Inst. and Meth., 182/183, 351 (1981).Google Scholar
15. Naguib, H.M. and Kelly, R., Rad. Effects, 25, 1 (1975).Google Scholar
16. Greegor, R.B., Lytle, F.W., Chakoumakos, B.C., Lumpkin, G.R. and Ewing, R.C., in Scientific Basis for Nuclear Waste Management - VIII, edited by Jantzen, C.M., Stone, J.A. and Ewing, R.C. (Materials Research Society, Pittsburgh, PA, 1985) p. 655662.Google Scholar
17. Greegor, R.B., Lytle, F.W., Chakoumakos, B.C., Lumpkin, G.R. and Ewing, R.C., in Scientific Basis for Nuclear Waste Management - IX, edited by Werme, L. (Materials Research Society, Pittsburgh, PA, 1985) pp. 387392.Google Scholar
18. Hogarth, D.D., Am. Mineral., 62, 403 (1977).Google Scholar
19. Stephenson, N.C. and Roth, R.S., Acta Cryst., B27, 1037 (1971).Google Scholar
20. Santoro, A., Marezio, M., Roth, R.S. and Minor, D., J. Sol. State Chem., 35, 167 (1980).Google Scholar
21. Chakoumakos, B.C, Lumpkin, G.R. and Ewing, R.C., Joint Annual Meeting, GAC-MAC-CGU, Program and Abstracts, 11, 96 (1986).Google Scholar
22. Darriet, B., Rat, M., Galy, J. and Hagenmuller, P., Mat. Res. Bull, 6, 1305 (1971).CrossRefGoogle Scholar
23. Winick, H. and Bienenstock, A., Ann. Rev. Nucl. Part. Sci., 28, 33 (1978).Google Scholar
24. Stern, E.A. and Heald, S., Rev. Sci. Inst., 50, 1579 (1979).Google Scholar
25. Kirby, J.A., “EXAFS Data Collection Program,” Unv. Calif., Berkeley (1978).Google Scholar
26. Klein, von S. and Weitzel, H., Acta Cryst., A32, 587 (1976).Google Scholar
27. Černý, P. and Ercit, T. S., Bull. Mineral., 108, 499 (1985).Google Scholar
28. Wise, M.A., Turnock, A.C. and Cérny, P., N. Jb. Miner. Mh., 1985, 372 (1985).Google Scholar
29. Yagi, K. and Roth, R.S., Acta Cryst., A34, 765 (1978).Google Scholar
30. Chakoumakos, B.C., in McGraw-Hill Yearbook of Science and Technology 1987, edited by Parker, S.P. (McGraw-Hill, New York, 1986) p. 393395.Google Scholar
31. Lee, P.A., Citrin, P.H., Eisenberger, P. and Kincaid, B.M., Rev. Mod. Physics, 53, 769 (1981).Google Scholar
32. Greegor, R.B., Lytle, F.W., Ewing, R.C. and Haaker, R.F., Nuc. Inst. and Meth. In Phys. Res., B1, 587 (1984).CrossRefGoogle Scholar
33. Lumpkin, G.R., Ewing, R.C., Chakoumakos, B.C, Greegor, R.B., Lytle, F.W., Foltyn, E.M., Clinard, F.W. Jr., Boatner, L.A. and Abraham, M.M., J. Mater. Res. 1(4), 564 (1986).Google Scholar
34. Greegor, R.B, Lytle, F.W., Chakoumakos, B.C., Lumpkin, G.R. and Ewing, R.C., in Abstracts Volume of 14th General Meeting of the International Mineralogical Association, Stanford, CA, (1986).Google Scholar