Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T09:03:57.162Z Has data issue: false hasContentIssue false

An Investigation of Boron Incorporation in SiGe MBE

Published online by Cambridge University Press:  22 February 2011

C. P. Parry
Affiliation:
Dept of Physics, University of Warwick, Coventry CV4 7AL, England.
R. A. Kubiak
Affiliation:
Dept of Physics, University of Warwick, Coventry CV4 7AL, England.
S. M. Newstead
Affiliation:
Dept of Physics, University of Warwick, Coventry CV4 7AL, England.
T. E. Whall
Affiliation:
Dept of Physics, University of Warwick, Coventry CV4 7AL, England.
E. H. C. Parker
Affiliation:
Dept of Physics, University of Warwick, Coventry CV4 7AL, England.
Get access

Abstract

The performance of many Si/SiGe devices, particularly those involving modulation doped quantum wells, will depend on the quality of the matrix and doping interfaces involved. These may be adversely affected by profile smearing of Ge and the dopant. A study of boron incorporation in SiGe, as a function of substrate temperature and Ge fraction, shows a marked difference in profile smearing for boron in Si and in the SiGe alloy. This is shown to be associated with a reduction in the temperature for transition from equilibrium to kinetically limited accumulation in the alloy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Parry, C. P., Newstead, S. M., Barlow, R. D., Augustus, P., Kubiak, R. A., Dowsett, M. G., Whall, T. E. and Parker, E. H. C., Appl. Phys. Lett. 57 (17), 1763 (1991).Google Scholar
2) Tatsumi, T.. Thin Solid Films 184, 1 (1990).Google Scholar
3) Jackman, T. E., Houghton, D. C., Jackman, J. A., Denhoff, M. W., Kechang, S., McCaffrey, J., and Rockett, A., Appl. Phys. Lett. 66 (5), 1984 (1989).Google Scholar
4) Lin, T. L., Fathauer, R. W. and Grunthaner, P. J., Appl. Phys. Lett. 55 (8), 795 (1989).Google Scholar
5) Kibbel, H., Kasper, E., Narozny, P. and Schreiber, H. V., Thin Solid Films 184, 163 (1990).Google Scholar
6) Prinz, E. J., Garone, P. M., Schwartz, P. V., Xiao, X., Sturm, J. C., IEEE Elect. Dev. Lett, 12 (2), 42 (1991).Google Scholar
7) Rhee, S. S., Chang, G. K., Cams, T. K., Wang, K. L., Appl. Phys. Lett. 56 (11), 1061 (1990).Google Scholar
8) Nakagawa, K., Miyao, M., Shiraki, Y., Jap. J. Appl. Phys. 27 (11), L2013 (1988).Google Scholar
9) Tatsumi, T., Hirayama, H., Aizaki, N., Jap. J. Appl. Phys. 27 (6), L954 (1988).Google Scholar
10) Jorke, H. and Kibbel, H., Appl. Phys. Lett. 57 (17), 1763 (1990).Google Scholar
11) Pindoria, G., Kubiak, R. A. A., Newstead, S. M. and Woodruff, D. P., Surf. Sci. 234, 17 (1990).Google Scholar
12) Iyer, S. S., Metzger, R. A. and Allen, F. G., J. Appl. Phys. 52, 5608 (1981).Google Scholar
13) Greene, J. E., Barnett, S. S., Rockett, A. and Bajor, G., Applic. Surf. Sci. 22/23, 520 (1985).Google Scholar
14) Jorke, H., Surf. Sci. 193, 569 (1988).Google Scholar
15) Andrieu, S., Arnaud d'Avitaya, F. and Pfister, J. C., J. Appl. Phys. 65 (7), 2681 (1989).Google Scholar