Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T23:11:45.084Z Has data issue: false hasContentIssue false

An Algorithm for Finding Optimized Interface Morphologies in Thin Film Silicon Solar Cells

Published online by Cambridge University Press:  16 May 2012

K. Jäger
Affiliation:
Photovoltaic Materials and Devices, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, the Netherlands
M. Fischer
Affiliation:
Photovoltaic Materials and Devices, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, the Netherlands
R.A.C.M.M. van Swaaij
Affiliation:
Photovoltaic Materials and Devices, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, the Netherlands
M. Zeman
Affiliation:
Photovoltaic Materials and Devices, Delft University of Technology, P.O. Box 5031, 2600 GA Delft, the Netherlands
Get access

Abstract

We recently developed a scattering model based on the scalar scattering theory. In this contribution we present how we used the scattering model to investigate interface textures with optimized scattering properties. We used the simulated annealing algorithm to find optimized surface textures and applied the ASA device simulator to evaluate the influence of these optimized textures on the performance of thin film silicon solar cells. We found that the lateral feature size of the textures is crucial for efficient scattering of the incident light.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Deckman, H.W., Wronski, C.R., Witzke, H., and Yablonovitch, E., Appl. Phys. Lett. 42, 968 (1983).CrossRefGoogle Scholar
Jäger, K. and Zeman, M., Ap pl. Phys. Lett. 95, 171108 (2009).CrossRefGoogle Scholar
Dominé, D., Haug, F.-J., Battaglia, C., and Ballif, C., J. Appl. Phys. 107, 044504 (2010).CrossRefGoogle Scholar
Bittkau, K., Schulte, M., Beckers, T., and Carius, R., Proc. SPIE 7725, 77250N (2010).CrossRefGoogle Scholar
Jäger, K., van Swaaij, R.A.C.M.M., and Zeman, M. in Optical Nanostructures and Advanced Materials for Photovoltaics (Optical Society of America, Washington, DC, 2011) p. PWC5.Google Scholar
Jäger, K., Fischer, M., van Swaaij, R.A.C.M.M., and Zeman, M., J. Appl. Phys., accepted for publication (2012).Google Scholar
Jäger, K., Fischer, M., Abatzis, M., van Swaaij, R.A.C.M.M., Solntsev, S., Zeman, M. in Proceedings 26th European Photovoltaic Solar Energy Conference (2011) pp. 23112315 .Google Scholar
Perlin, K. in Proceedings of the 12th annual conference on Computer graphics and interactive techniques (1985) pp. 287296; Computers & Graphics 26, 3 (2002).Google Scholar
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P., Science 220, 671 (1983).CrossRefGoogle Scholar
Černý, V., J. Opt. Theory App. 45, 4151 (1985).CrossRefGoogle Scholar
Sato, K., Gotoh, Y., Wakayama, Y., Hayashi, Y., Adachi, K., and Nishimura, N., Rep. Res. Lab.: Asahi Glass Co. Ltd. 42, 129 (1992).Google Scholar
Isabella, O., Krc, J., Zeman, M., Appl. Phys. Lett. 97, 101106 (2010).CrossRefGoogle Scholar
Boccard, M., Battaglia, C., Hänni, S., Söderström, K., Escarré, J., Nicolay, S., Meillaud, F., Despeisse, M., and Ballif, C.. Nano Lett. 12, 1344 (2012).CrossRefGoogle Scholar