Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-23T21:50:42.934Z Has data issue: false hasContentIssue false

Amorphous to Polycrystal Transition Assisted by Ion Beam Irradiation in Silicon

Published online by Cambridge University Press:  25 February 2011

C. Spinella
Affiliation:
Istituto di Metodologie e Tecnologie per la Microelettronica C.N.R. - Corso Italia, 57 - 195129, - Catania – Italy
S. Lombardo
Affiliation:
Istituto di Metodologie e Tecnologie per la Microelettronica C.N.R. - Corso Italia, 57 - 195129, - Catania – Italy
S. U. Campisano
Affiliation:
Dipartimento di Fisica dell'Università, Corso Italia, 57 - 195129, Catania - Italy
Get access

Abstract

The ion beam induced growth of isolated silicon grains has been studied in chemical vapor deposited amorphous layers. The crystal radius increases linearly with the 1on dose and the growth rate depends in a complex way on the irradiation temperature in the 320 - 480 °C investigated temperature range. The grain density does not depend on the ion dose but it increases exponentially with increasing irradiation temperature. The grain density obtained after a pure thermal process on similar samples is In any case larger than the density appearing after ion irradiation. These facts may be explained by assuming that during ion irradiation only pre-existing seeds whose size is larger than a critical value can grow. This critical cluster size is larger than the critical cluster size for a pure thermal process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Linnros, J., Svensson, B. and Holmen, G.; Phys. Rev. B30 3629 (1984)Google Scholar
2 Williams, J.S., EllIman, R.G., Brown, M.L. and Seidel, T.E.; Phys. Rev. Lett. 5, 1482 (1985)Google Scholar
3 Prlolo, F., La Ferla, A. and Rimini, E.; J. Mater. Res. 3, 1212 (1988)Google Scholar
4 Priolo, F., Spinella, C., La Ferla, A., Battaglia, A., Rimini, E., Ferla, G. Camera, A. and Gasparotto, A. in processing and Characterization of Materials Using Ion Beams, edited by Rehn, L.E., Greene, J., and Smidt, F.A. (Mater. Res. Soc. Proc. 128, Pittsburgh PA 1988) pp. 563568.Google Scholar
5 Linnros, J.; Elliman, R.G. and Brown, W.L.; J. Mater. Res. 3, 1208 (1988)Google Scholar
6 Jackson, K.A.; J. Mater. Res. 3, 1218 (1988)Google Scholar
7 Priolo, F., Spi nella, C. and Rimini, E.; “A phenomenologlcal description of ion-beam-induced epitaxial crystallization of amorphous silicon”; Phys. Rev. B (in press)Google Scholar
8 Spinella, C., Lombardo, S. and Campisano, S.U., Appl. Phys. Lett. 55, 109 (1989)Google Scholar
9 Iverson, R.B. and Reif, R.; J. Appl. Phys. 62, 1675 (1987)Google Scholar
10 Priolo, F., Spinella, C., La Ferla, A.M., Rimini, E. and Ferla, G.; “Ion assisted recrystallization of amorphous silicon”; Appl. Surface Sci. (in press)Google Scholar
11 Spinella, C., Lombardo, S. and Campisano, S.U.; “Amorphous to polycrystal transition in ion irradiated chemical vapor deposited amorphous silicon”; Appl. Surface Sci. (in press)Google Scholar
12 Kelton, K.F., Greer, A.L. and Thompson, C.V.; J. Chem. Phys. 79, 6261 (1983)Google Scholar
13 Atwater, H.A., Thompson, C.V. and Smith, H.I.; Phys. Rev. Lett. 60, 112, (1988)Google Scholar