Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T11:27:15.236Z Has data issue: false hasContentIssue false

Amorphous Silicon-Carbon Alloys and Amorphous Carbon from Direct Methane and Ethylene Activation by ECR

Published online by Cambridge University Press:  15 February 2011

J. P. Conde
Affiliation:
Dept. of Materials Engineering, Instituto Superior Técnico, Lisbon, Portugal
V. Chu
Affiliation:
Instituto de Engenharia de Sistemas e Computadores, Lisbon, Portugal
F. Giorgis
Affiliation:
Dept. of Physics, Politecnico di Torino, Torino, Italy
C. F. Pirrt
Affiliation:
Dept. of Physics, Politecnico di Torino, Torino, Italy
S. Arekat
Affiliation:
Dept. of Physics, Univ. of Bahrain, Bahrain
Get access

Abstract

Hydrogenated amorphous silicon-carbon alloys are prepared using electron-cyclotron resonance (ECR) plasma-enhanced chemical vapor deposition. Hydrogen is introduced into the source resonance cavity as an excitation gas. Silane is introduced in the main chamber in the vicinity of the plasma stream, whereas the carbon source gases, methane or ethylene, are introduced either with the silane or with the hydrogen as excitation gases. The effect of the type of carbon-source gas, excitation gas mixture and silane-to-carbon source gas flow ratio on the deposition rate, bandgap, subgap density of states, spin density and hydrogen evolution are studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Azuma, M., Yokoi, T., Shiiya, I. and Shimizu, I., J. Non-Cryst. Solids 164–166, 47 (1993).Google Scholar
[2] Andosca, R.G., Varhue, W.J. and Adams, E., J. Appl. Phys. 72, 1126 (1992).Google Scholar
[3] Watanabe, T., Tanaka, M., Azuma, K., Nakatani, M., Sonobe, T. and Shimada, T., Jpn. J. Appl. Phys 26, 1215 (1987).Google Scholar
[4] Tawada, Y., Okamoto, H. and Hamakawa, Y., Appl. Phys. Lett. 39, 237 (1981).Google Scholar
[5] Engemann, D., Fischer, R. and Knecht, J., Appl. Phys. Lett. 32, 567 (1978).Google Scholar
[6] Kruangam, D., Endo, T., Wei, G.P., Nonomura, S., Okamoto, H. and Hamakawa, Y., J. Non-Cryst. Solids 77&78, 1429 (1985).Google Scholar
[7] Liu, C.C., Lee, C., Cheng, K.L., Cheng, H.C. and Yew, T.R., Appl. Phys. Lett. 66, 168 (1995).Google Scholar
[8] Kruangam, D., Toyama, T., Hattori, Y., Deguchi, M., Okamoto, H. and Hamakawa, Y., J. Non-Cryst. Solids 97&98, 293 (1987)Google Scholar
[9] Yoon, S.F., Ji, R., Ahn, J., Milne, W.I., J. Vac. Sci. Technol. A 15, 21 (1997).Google Scholar