Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T05:43:05.240Z Has data issue: false hasContentIssue false

Amorphous Nitride Alloys as Hosts for Rare-Earth Luminescent Ions.

Published online by Cambridge University Press:  21 March 2011

M. L. Caldwell
Affiliation:
Condensed Matter and Surface Science Program, Ohio University, Athens, OH 45701, U.S.A.
M. E. Little
Affiliation:
Condensed Matter and Surface Science Program, Ohio University, Athens, OH 45701, U.S.A.
C. M. Spalding
Affiliation:
Condensed Matter and Surface Science Program, Ohio University, Athens, OH 45701, U.S.A.
M. E. Kordesch
Affiliation:
Department of Physics and Astronomy, Ohio University, Athens, OH 45701, U.S.A., kordesch@helios.phy.ohiou.edu
H. H. Richardson
Affiliation:
Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, U.S.A., richards@helios.phy.ohiou.edu
Get access

Abstract

Amorphous alloys of aluminum-gallium nitride doped with erbium (Er) were deposited at 300 K. The compositions ranged from 19% Al to 86% Al with optical band gaps varying linearly with composition from 3.4 eV (GaN) to 6.2 eV (AlN). The films were deposited on p-doped silicon (111) by a dc/rf dual gun system in a nitrogen/argon atmosphere at a pressure of 4.8 milli-Torr. After growth the films were thermally “activated” at 1070 K for 10 minutes in a nitrogen atmosphere. The cathodoluminescence emission intensities decreased linearly with Ga composition. This dependence suggests that the higher energy transitions in the Er ion are quenched by transitions to the conduction band of the alloys.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lozykowski, H. J., Jadwisienczak, W. M. and Brown, I., Appl. Phys. Lett. 74, 1129 (1999).Google Scholar
2. Birkhahn, R., Garter, M. and Steckl, A. J., Appl. Phys. Lett. 74, 2161 (1999).Google Scholar
3. Lozykowski, H. J., Jadwisienczak, W. M. and Brown, I., Appl. Phys. Lett. 76, 861 (2000).Google Scholar
4. Caldwell, M. L., Richardson, H. H. and Kordesch, M. E., MRS Internet Journal Nitride Semiconductor Research, 5S1, W3.26 pp. 17 (1999).Google Scholar
5. Caldwell, M. L., Martin, A. L., Dimitrova, V. I., Spalding, C. M., VanPatten, P. G., Kordesch, M. E., Richardson, H. H., J. Vac. Sci. Technol. 19, (2001).Google Scholar
6. Caldwell, M. L., Martin, A. L., Spalding, C. M., VanPatten, P. G., Kordesch, M. E., Richardson, H. H., Material Research Symposium Proceedings, G6.6 (2000) in press.Google Scholar
7. Caldwell, M. L., Martin, A. L., Dimitrova, V. I., Patten, P. G. Van, Kordesch, M. E., Richardson, H. H., Appl. Phys. Lett. 78, 1246, (2001).Google Scholar
8. Spalding, C. M., Caldwell, M. L., Dimitrova, V. I., Martin, A. L., Kordesch, M. E., Richardson, H. H., Patten, P. G. Van, Material Research Symposium Proceedings, G6.28 (2000) in press.Google Scholar
9. Martin, A. L., Caldwell, M. L., Kordesch, M. E., Spalding, C. M., Patten, P. G. Van, Richardson, H. H., Material Research Symposium Proceedings, G6.5 (2000) in press.Google Scholar
10. Dimitrova, V. I., Patten, P. G. Van, Richardson, H. H., Kordesch, M. E., Appl. Phys. Lett. 77(4), 478 (2000).Google Scholar
11. Chen, H., Chen, K., Drabold, D. A., Kordesch, M. E., Appl. Phys. Lett. 77(8), 1117 (2000).Google Scholar
12. Steckl, A. J., Birkhahn, R., Appl. Phys. Lett. 73(12), 1700, (1998).Google Scholar