Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-05-13T00:49:46.082Z Has data issue: false hasContentIssue false

Amorphization of Nanolaminates during Severe Plastic Deformation: Molecular Simulations in the Cu-Zr System

Published online by Cambridge University Press:  10 February 2011

Alan C. Lund
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, Massachusetts, USA 02139
Get access

Abstract

Mechanical alloying techniques, which use plastic deformation to effect structural changes, are commonly used to prepare nanostructured metals with exemplary mechanical properties. When these nanostructured metals are subjected to further straining fully amorphous alloys can result, but there is little understanding of the atomic-scale mechanisms behind this amorphization. In the present work, we explore the final stages of such a mechanical alloying process via molecular simulations. Initial Cu-Zr nanolaminates are sequentially strained and consolidated, and the amorphization process is followed explicitly. The results are in qualitative agreement with existing experimental data, and provide insight into experimentally inaccessible features of the structural evolution.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Delogu, F., Schiffini, L. and Cocco, G., Philos. Mag. A 81, 1917 (2001).Google Scholar
[2] Politis, C. and Johnson, W. L., J. Appl. Phys. 60, 1147 (1986).Google Scholar
[3] Huang, B., Perez, R. J., Crawford, P. J., Sharif, A. A., Nutt, S. R. and Lavernia, E. J., Nanostructured Mater. 5, 545 (1995).Google Scholar
[4] Ravishankar, N., Abinandanan, K. and Chattopadhyay, K., Mater. Sci. Eng. A304-306, 413 (2001).Google Scholar
[5] Machado, K. D., deLima, J. C., deCampos, C. E. M., Grandi, T. A. and Triches, D. M., Phys. Rev. B 66, 094205 (2002).Google Scholar
[6] Sagel, A., Sieber, H., Fecht, H.-J. and Perepezko, J. H., Philos. Mag. Lett. 77, 109 (1998).Google Scholar
[7] Sagel, A., Sieber, H., Fecht, H.-J. and Perepezko, J. H., Acta Mater. 46, 4233 (1998).Google Scholar
[8] Bordeaux, F. and Yavari, A. R., J. Appl. Phys. 67(5), 2385 (1990).Google Scholar
[9] Atzmon, M., Unruh, K. M. and Johnson, W. L., J. Appl. Phys. 58, 3865 (1985).Google Scholar
[10] Koike, J., Parkin, D. M. and Nastasi, M., J. Mater. Res. 5, 1414 (1990).Google Scholar
[11] Schulz, R., Trudeau, M. and Huot, J. Y., Phys. Rev. Lett. 62, 2849 (1989).Google Scholar
[12] Schwarz, R. B. and Koch, C. C., Appl. Phys. Lett. 49, 146 (1986).Google Scholar
[13] Schwarz, R. B., Petrich, R. R. and Saw, C. K., J. Non-Cryst. Solids 76, 281 (1985).Google Scholar
[14] El-Eskandarany, M. Sherif, Aoki, K., Sumiyama, K. and Suzuki, K., Appl. Phys. Lett. 70, 1679 (1997).Google Scholar
[15] El-Eskandarany, M. Sherif, Aoki, K., Sumiyama, K. and Suzuki, K., Scripta Mater. 36, 1001 (1997).Google Scholar
[16] Fecht, H. J., Han, G., Fu, Z. and Johnson, W. L., J. Appl. Phys. 67, 1744 (1990).Google Scholar
[17] Lund, A. C. and Schuh, C. A., Appl. Phys. Lett. 82, 2017 (2003).Google Scholar
[18] Deng, D., Argon, A. S. and Yip, S., Philos. Trans. Roy. Soc. Lond. 329, 549 (1989).Google Scholar
[19] El-Eskandarany, M. Sherif and Inoue, A., Metall. Mater. Trans. 33A, 135 (2002).Google Scholar
[20] Sieber, H., Park, J. S., Weissmuller, J. and Perepezko, J. H., Acta Mater. 49, 1139 (2001).Google Scholar
[21] Lund, A. C. and Schuh, C. A., Phys. Rev. B under review (2003).Google Scholar