Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-20T04:35:30.017Z Has data issue: false hasContentIssue false

Aluminum Nitride fibers from a Thermoplastic Organoaluminum Precursor

Published online by Cambridge University Press:  21 February 2011

John D. Bolt
Affiliation:
E. I. du Pont de Nemours & Co., Experimental Station, E262, Wilmington, DE 19898
Fred N. Tebbe
Affiliation:
E. I. du Pont de Nemours & Co., Experimental Station, E262, Wilmington, DE 19898
Get access

Abstract

A new organoaluminum polymer (EtAINH)n(Et2AlNH2)m·AlEt3 derived from triethylaluminum and ammonia, is thermoplastic at elevated temperatures and a glassy solid at ambient temperature. As a thermoplastic it can be processed in certain shapes, solidified, cured and transformed to dense aluminum nitride with retention of its shape. Aluminum nitride fibers are prepared by melt spinning the polymer, pyrolyzing in ammonia and at high temperature in nitrogen. The AlN microstructure forms as very fine particles at 400–600°C, coarsens at higher temperature, and densifies at 1600–1800 °C into polycrystalline AlN with submicron grains. Mechanical strength, thermal expansion and dielectric constant are consistent with bulk ceramic values. Initial thermal conductivity deduced from composite measurements is 82 W/m°K in fibers containing 0.5 to 1.0 percent oxygen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Slack, G. A., Tanzilla, R. A., Pohl, R. O., and Vandersande, J. W., J. Phys. Chem. Solids, 48, 641 (1987).Google Scholar
2.Button, D. P., Yost, B. A., French, R. H., Hsu, W. Y., Bolt, J. D., Subramanian, M. A., Zhang, H.-M., Geidd, R. E., Whitaker, A. J., and Onn, D. G., submitted to Advances in Ceramics, edited by O'Bryan, H. M., Niwa, K., Young, W., and Yan, M. F..Google Scholar
3.Tebbe, F. N., U.S. Patent No. 4 696 968 (October, 1987).Google Scholar
4.Tebbe, F. N., Bolt, J. D., Young, R. J., Van Buskirk, O. R., Mahler, W., Reddy, G. S., and Chowdhry, U., submitted to Advances in Ceramics, edited by O'Bryan, H. M., Niwa, K., Young, W., and Yan, M. F..Google Scholar
5.Bolt, J. D. and Tebbe, F. N., submitted to Advances in Ceramics, edited by O'Bryan, H. M., Niwa, K., Young, W., and Yan, M. F..Google Scholar
6.Wiberg, E., reported in Bahr, G., FIAT Review of German Science, 24, Inorganic Chemistry, Pt.2, Klemm, W., ed. (1948), p. 55.Google Scholar
7.Interrante, L. V., Carpenter, L. E., II Whitmarsh, C., Lee, W., Garbauskas, M., and Slack, G. A. in Better Ceramics Through Chemistry 2, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Proc. 73, Palo Alto, CA, 1986) pp. 359.Google Scholar
8.Rensch, U. and Eichorn, G., Phys. Stat. Sol. (a) 77, 195 (1983).Google Scholar
9.Morita, M., Uesugi, N., Isogai, S., Tsubouchi, K., and Mikoshiba, N., Jap. J. Appl. Phys., 20, 17 (1981).Google Scholar
10.Manasevit, H. M., Erdmann, F. M., and Simpson, W. I., J. Electrochem. Soc., 118, 1864 (1971).Google Scholar
11.Maeda, N. and Harada, H, Japanese pat. Application public. Tokuko 54–13 439 (1979).Google Scholar
12.Taylor, K. M. and Lenie, C., J. Electrochem. Soc., 107, 308 (1960).Google Scholar
13.Billy, M. and Mexmain, J., Sprechsaal, 118, 245 (1985).Google Scholar
14.Gitzen, W. H., Alumina as a Ceramic Material (Am. Ceram. Soc., Columbus, Ohio, 1970) p. 7884.Google Scholar