Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-18T19:07:54.406Z Has data issue: false hasContentIssue false

Alteration of Si-B-Na-Al model glass in water at 90°C: experiments and thermodynamic modelling

Published online by Cambridge University Press:  11 February 2011

Isabelle Munier
Affiliation:
E O S T - Centre de Géochimie de la Surface, UMR 7517, 1 rue Blessig, 67000 Strasbourg, France
Jean-Louis Crovisier
Affiliation:
E O S T - Centre de Géochimie de la Surface, UMR 7517, 1 rue Blessig, 67000 Strasbourg, France
Get access

Abstract

An attempt to model the alteration process of a model glass (Si-B-Al-Na), similar to the French reference SON68 glass, by using the geochemical code KINDIS, was developed. This simulation study was compared with experiments carried out in parallel: glass samples were placed at 90°C in pure water for 30 to 180 days, at two different S/V ratios (1 and 80 cm-1).

The formation of the alteration layer was simulated by the precipitation of an ideal solid solution. The cases of oxides, hydroxides and metasilicates as end-members were tested. The considered solid solution always contains a siliceous end-member, which consists of amorphous silica, chalcedony or quartz.

The relative thermodynamic stability of the chosen end-members (especially siliceous ones) influences directly the composition of the predicted gel and thus the composition of the solution. The results obtained by using chalcedony and hydroxides as end-members show a good agreement between the experimental and modelled silicon contents in solutions and in alteration gels, whatever the S/V ratio.

The gel layer of the glass contains significant amounts of Na and Al, which are equimolar on average, what would probably correspond to the compensation of AlO4- charges by Na+.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Byers, C. D., Jercinovic, M. J., Ewing, R. C. and Keil, K., in Scientific Basis for Nuclear Waste Management VIII, edited Jantzen, C.M., Stone, J.A. and Ewing, R.C. (Mat. Res. Soc. Proc., 44, Pittsburgh, PA, 1985) pp. 583590.Google Scholar
2. Grambow, B., Jercinovic, M. J., Ewing, R. C. and Byers, C. D., in Scientific Basis for Nuclear Waste Management IX, edited by Werme, L.O. (Mat. Res. Soc. Proc., 50, Pittsburgh, PA, 1985) pp. 263272.Google Scholar
3. Caurel, J., Vernaz, E. and Beaufort, D., in Scientific Basis for Nuclear Waste Management XIII, edited Oversby, V.M. and Brown, P.W. (Mat. Res. Soc. Proc., 176, Pittsburgh, PA, 1990) pp. 309318.Google Scholar
4. Crovisier, J.-L., Vernaz, E., Dussossoy, J. L. and Caurel, J., Applied Clay Science 7, 47 (1992).Google Scholar
5. Crovisier, J. L., Thomassin, J. H., Juteau, T., Eberhart, J. P., Touray, J. C. and Bailli, P., Geochimica et Cosmochimica Acta 47, 377 (1983).Google Scholar
6. Wallace, R. and Wicks, G., in Scientific Basis for Nuclear Waste Management VI, edited by Brookins, D.G. (Mat. Res. Soc. Proc., 15, Pittsburgh, PA, 1983) pp. 2328.Google Scholar
7. Jercinovic, M. J., Kaser, S. A., Ewing, R. C. and Lutze, W., in Scientific Basis for Nuclear Waste Management XII, edited Lutze, W. and Ewing, R.C. (Mat. Res. Soc. Proc., 127, Pittsburgh, PA, 1990) pp. 355362.Google Scholar
8. Daux, V., Crovisier, J. L., Hemond, C. and Petit, J. C., Geochimica et Cosmochimica Acta 58 (22), 49414954 (1994).Google Scholar
9. Vernaz, E., Gin, S., Jégou, C. and Ribet, I., J. Nuclear Materials 298, 27 (2001).Google Scholar
10. Madé, B., Clément, A. and Fritz, B., Computers & Geoscience 20, 31 (1994).Google Scholar
11. Jégou, C., PhD. Thesis, University of Sciences and Techniques of Languedoc, Montpellier II, 1998.Google Scholar
12. Ebert, W. L., Physics and Chemistry of Glasses 34 (2), 5865 (1993).Google Scholar
13. Munier, I., Crovisier, J.-L, Grambow, B. and Fritz, B., J. Nuclear Materials, Submitted.Google Scholar
14. Helgeson, H. C., Delany, J. M., Nesbitt, H. W. and Bird, D. K., American J. Science 278–A, 1 (1978).Google Scholar
15. Fritz, B., Sciences Géologiques (Université Louis Pasteur, Strasbourg, 1981) 65, p197.Google Scholar
16. Shock, E. L., Sassani, D. C., Willis, M. and Sverjensky, D. A., Geochimica et Cosmochimica Acta 61 (5), 907950 (1997).Google Scholar
17. Robie, R. A., Hemingway, B. S. and Fisher, J. R., Geological Survey Bulletin 1452, 1 (1979).Google Scholar
18. Shock, E. L., Helgeson, H. C. and Sverjensky, D. A., Geochimica et Cosmochimica Acta 53, 2157 (1989).Google Scholar
19. Robie, R. A. and Hemingway, B. S., Geological, U. S. Survey Bulletin 2131, 1 (1995).Google Scholar
20. Paul, A., J. Material Science 12, 2246 (1977).Google Scholar
21. Ricol, S., PhD. Thesis, University Pierre et Marie Curie, Paris VI, 1995.Google Scholar
22. Zarembowitch-Déruelle, O., PhD. Thesis, University Pierre et Marie Curie, Paris VI (1997).Google Scholar