Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-27T03:55:57.810Z Has data issue: false hasContentIssue false

Alloying-Driven Phase Stability in Group-VB Transition Metals under Compression

Published online by Cambridge University Press:  17 November 2011

Alexander Landa
Affiliation:
Condensed Matter and Materials Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, L-045, 7000 East Avenue, Livermore, CA 94551-0808, U.S.A.
Per Söderlind
Affiliation:
Condensed Matter and Materials Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, L-045, 7000 East Avenue, Livermore, CA 94551-0808, U.S.A.
Get access

Abstract

The change in phase stability of Group-VB (V, Nb, and Ta) transition metals due to pressure and alloying is explored by means of first-principles electronic-structure calculations. It is shown that under compression stabilization or destabilization of the ground-state body-centered cubic (bcc) phase of the metal is mainly dictated by the band-structure energy that correlates well with the position of the Kohn anomaly in the transverse acoustic phonon mode. The predicted position of the Kohn anomaly in V, Nb, and Ta is found to be in a good agreement with data from the inelastic x-ray or neutron scattering measurements. In the case of alloying the change in phase stability is defined by the interplay between the band-structure and Madelung energies. We show that band-structure effects determine phase stability when a particular Group-VB metal is alloyed with its nearest neighbors within the same d-transition series: the neighbor with less and more d electrons destabilize and stabilize the bcc phase, respectively. When V is alloyed with neighbors of a higher (4d- or 5d-) transition series, both electrostatic Madelung and band-structure energies stabilize the body-centered-cubic phase. The opposite effect (destabilization) happens when Nb or Ta is alloyed with neighbors of the 3d-transition series.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ishizuka, M., Iketani, M., and Endo, S., Phys. Rev. B 61, R3823 (2000).Google Scholar
2. Suzuki, N. and Otani, M., J. Phys.: Condens. Matter 14, 10869 (2002).Google Scholar
3. Luo, W., Ahuja, R., Ding, Y., and Mao, H. K., Proc. Natl. Acad. Sci. 104, 16428 (2007).Google Scholar
4. Bosak, A., Hoesch, M., Antonangeli, D., Farber, D. L., Fischer, I., and Krisch, M., Phys. Rev. B 78, 020301(R) (2008).Google Scholar
5. Ding, Y., Ahuja, R., Shu, J., Chow, P., Luo, W., and Mao, H. K., Phys. Rev. Lett. 98, 085502 (2007).Google Scholar
6. Lee, B., Rudd, R. E., Klepeis, J. E., Söderlind, P., and Landa, A., Phys. Rev. B 75, (2007) 180101(R).Google Scholar
7. Landa, A., Klepeis, J., Söderlind, P., Naumov, I., Velikokhatnyi, O., Vitos, L., and Ruban, A., J. Phys.: Condens. Matter 18, 5079 (2006).Google Scholar
8. Landa, A., Klepeis, J., Söderlind, P., Naumov, I., Velikokhatnyi, O., Vitos, L., and Ruban, A., J. Phys. Chem. Sol. 67, 2056 (2006).Google Scholar
9. Koči, L., Ma, Y., Oganov, A. R., Souvatzis, P., and Ahuja, R., Phys. Rev. B 77, 214101 (2008).Google Scholar
10. Struzhkin, V. V., Timofeev, Y. A., Hemley, R. J., and Mao, H. K., Phys. Rev. Lett. 79, 4262 (1997).Google Scholar
11. Matthias, B. T., Geballe, T. H., and Compton, V. B., Rev. Mod. Phys. 35(1), 1 (1963).Google Scholar
12. Nakagawa, Y. and Woods, A. D. B., Phys. Rev. Lett. 11, 271 (1963).Google Scholar
13. Woods, A. D. B., Phys. Rev. 136, A781 (1964).Google Scholar
14. Vitos, L., Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications (Springer-Verlag, London, 2007).Google Scholar
15. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
16. Faulkner, J. S., Prog. Mat. Sci. 27, 1 (1982).Google Scholar
17. Vitos, L., Abrikosov, I. A., Johansson, B., Phys. Rev. Lett. 87, 156401 (2001).Google Scholar
18. Chadi, D. J. and Cohen, M. L., Phys. Rev B 8, 5747 (1973); S. Froyen, ibid. 39, 3168(1989).Google Scholar
19. Ruban, A. V. and Skriver, H. L., Phys. Rev. B 66, 024201 (2002); A. V. Ruban, S. I. Simak, P. A. Korzhavyi, and H. L. Skriver, ibid. 66, 024202(2002).Google Scholar
20. Abrikosov, I. A., Simak, S. I., Johansson, B., Ruban, A. V., and Skriver, H. L., Phys. Rev. B 56, 9319 (1997).Google Scholar
21. Wills, J. M., Eriksson, O., Alouani, M., Price, D. L., in: Electronic Structure and Physical Properties of Solids: The Uses of the LMTO Method, edited by Dreyssé, H. (Springer- Verlag, Berlin, 2000), pp.148167.Google Scholar
22. Murnaghan, F. D., Proc. Natl. Acad. Sci. 30, 244 (1944).Google Scholar
23. Mehl, M., Klein, B. M., and Papaconstantopoulos, D. A., in: Intermetallic Compounds: Principles and Practice, Principles, edited by Westbrook, J.H. and Fleisher, R.L. (Wiley, London, 1995), Vol. 1, pp. 195210.Google Scholar
24. Rath, J. and Freeman, A. J., Phys. Rev. B 11, 2109 (1975).Google Scholar
25. Bosak, A., private communication, (2010).Google Scholar
26. Powell, B. M., Martel, R., and Woods, A. D. B., Can. J. Phys. 55, 1601 (1977).Google Scholar
27. Landa, A., Söderlind, P., Ruban, A.V., Peil, O.E., and Vitos, L., Phys. Rev. Lett. 103, 235501 (2009).Google Scholar
28. Krishnan, R., Garg, S. P., and Krishamurthy, N., in: Binary Alloy Phase Diagrams, 2nd ed., edited by Massalski, T. B. (ASM International, Materials Park, OH, 1990), Vol. 3, p. 2772.Google Scholar
29. Krishnan, R., Garg, S. P., and Krishamurthy, N., in: Binary Alloy Phase Diagrams, 2nd ed., edited by Massalski, T. B. (ASM International, Materials Park, OH, 1990), Vol. 3, p. 3438.Google Scholar
30. Yang, L., Cynn, H., Klepeis, J.-H., Pask, J., and Rudd, R., in: Abstracts of APS March Meeting, (Portland, OR, 2010), Bull. Am. Phys. Soc. 55(2), p. 389 (2010).Google Scholar
31. Schwartz, A. J., Lassila, D. H., and LeBlanc, M. M., Mater. Sci. and Eng. A 244, 178 (1998).Google Scholar
32. Anderson, C. E. and Brotzen, F. R., J. Appl. Phys. 53(1), 292 (1982).Google Scholar