Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-17T04:14:17.506Z Has data issue: false hasContentIssue false

ALL-ORGANIC FLEXIBLE AND TRANSARENT AMBIPOLAR FETs WITH ORGANIC BULK HETEROJUNCTIONS

Published online by Cambridge University Press:  01 February 2011

Piero Cosseddu
Affiliation:
piero.cosseddu@diee.unica.it, University of Cagliari, Electrical and Electronic Engineering, Piazza d'Armi, Cagliari, 09123, Italy, +390706755769, +390706755782
Annalisa Bonfiglio
Affiliation:
annalisa@diee.unica.it, University of Cagliari, Electrical and Electronic Engineering, Piazza d'Armi, Cagliari, 09123, Italy
Ingo Salzmann
Affiliation:
ingo.salzmann@physik.hu-berlin.de, Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, Berlin, 12489, Germany
Jurge P. Rabe
Affiliation:
rabe@physik.hu-berlin.de, Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, Berlin, 12489, Germany
Norbert Koch
Affiliation:
norbert.koch@physik.hu-berlin.de, Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, Berlin, 12489, Germany
Get access

Abstract

We report on the realization of flexible and transparent all-organic Ambipolar Field Effect Transistors. The devices were assembled on a flexible plastic foil, i.e. Mylar®, and the contacts were realized with poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and patterned by means of Soft Lithography, MicroContact Printing (μCP). As semiconductor layer we used organic bulk heterojunctions of pentacene/C60 realized either by co-deposition of the two different molecules or by a double layer structure in which pentacene was used as buffer layer at the interface with the gate dielectric. Interestingly, all devices (co-deposited and double layer), measured in air, worked in accumulation mode as ambipolar OFETs, however some interesting differences between the two structures can be pointed out. Supported by Atomic Force Microscopy, we demonstrated that growing C60 on a pre-deposited pentacene buffer layer leads to a clear improvement in the morphology and crystallinity of the deposited film allowing to improve n-type conduction by two orders of magnitude. This work is particularly interesting because on one hand it confirms the importance of the substrate properties for the ordered growth of organic semiconductors, which determines the transport properties of organic materials; moreover, it demonstrates, also for n-type and ambipolar transistors, the possibility of avoiding problems normally associated to metal contacts: the lack of mechanical robustness, flexibility, and the unfeasibility of realizing contacts with low cost techniques like printing or soft lithography. The flexibility and transparency of the final OFET structure and the simple low cost fabrication technique employed pave the way for an economic mass production of large area transparent “Plastic Electronics”.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Meijer, E. J., Leeuw, D. M. de, Setayesh, S., Veenendaal, E. van, Huisman, B.-H., Blom, P. W. M., Hummelen, J. C., Scherf, U., and Klapwijk, T. M., Nat. Mater. 2 678 (2003)10.1038/nmat978Google Scholar
2. Anthopoulos, T. D., Leeuw, D. M. de, Setayesh, S., Cantatore, E., Tanase, C., Blom, P. W. M., and Hummelen, J. C., Mater. Res. Soc. Symp. Proc. 871E, I11.9.1 (2005)Google Scholar
3. Opitz, A., Bronner, M. and Brutting, W., J. Appl. Phys. 101 063709 (2007)Google Scholar
4. Collins, S.F, Baxter, G. W., Wade, S. A., Sun, T., Grattan, K. T. V., Zhang, Z. Y., and Palmer, A. W., J. of Appl. Phys. 84 4649 (1998)10.1063/1.368705Google Scholar
5. Lin, Y.-Y., Gundlach, D. J., Nelson, S. F., and Jackson, T. J., IEEE Electron Device Lett. 18 606 (1997)10.1109/55.644085Google Scholar
6. Tessler, N., Harrison, N. T., Thomas, D. S., Friend, R. H., Appl. Phys. Lett. 73 732 (1998)10.1063/1.121983Google Scholar
7. Kobayashi, S., Takenobu, T., Mori, S., Fujiwara, A., and Isawa, Y., Appl. Phys. Lett. 82 4581 (2003)10.1063/1.1577383Google Scholar
8. Wade, S. A., Collins, S. F., Baxter, G. W., J. of Appl. Phys. 94 4743 (2003)10.1063/1.1606526Google Scholar
9. Takenobu, T., Takahashi, T., Takeya, J., and Iwasa, Y., Appl. Phys. Lett. 90 013507 (2007)and references therein10.1063/1.2408642Google Scholar
10. Smits, E. C. P., Anthopoulos, T. D., Setayesh, S., Veenendaal, E. van, Coehoorn, R., Blom, P. W., Boer, B. de, and Leeuw, D. M. de, Phys. Rev. B 73 205316 (2006)10.1103/PhysRevB.73.205316Google Scholar
11. Seo, S., Park, B-N. and Evans, P. G., Appl. Phys. Lett. 88 232114 (2006)10.1063/1.2210294Google Scholar
12. Yasuda, T., Goto, T., Fujita, K. and Tsutsui, T., Appl. Phys. Lett. 85 2098 (2004)10.1063/1.1794375Google Scholar
13. Chua, L.-L., Zaumseil, J., Chang, J.-F., Ou, E. C.-W., Ho, P. K.-H., Sirringhaus, H. and Friend, R. H., Nature 434 194 (2005)10.1038/nature03376Google Scholar
14. Dimitrakopoulos, C. D., Malenfant, P. R. L., Adv. Mat. 14 99 (2002)10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-93.0.CO;2-9>Google Scholar
15. Anthopoulos, T. D., Tanase, C., Setayesh, S., Meijer, E. J., Hummelen, J. C., Blom, P. W. M. and Leeuw, D. de, Adv. Mater. 16 2174 (2004)10.1002/adma.200400309Google Scholar
16. Takahashi, T., Takenobu, T., Takeya, J., Iwasa, Y., Appl. Phys. Lett. 88 033505 (2006)10.1063/1.2166698Google Scholar
17. Kuwahara, E., Kubozono, Y., Hosokawa, T., Fujiwara, A., Appl. Phys. Lett. 85 4765 (2004)10.1063/1.1818336Google Scholar
18. Singh, T. B., Marjanovic, N., Stadler, P., Auinger, M., Matt, G. J., Günes, S. and Sariciftci, N. S., Journ. of Appl. Phys. 97 083714 (2005)10.1063/1.1895466Google Scholar
19. Wang, H., Wang, J., Yan, X., Shi, J., Tian, H., Geng, Y. and Yan, D., Appl. Phys. Lett. 88 133508v (2006)10.1063/1.2190445Google Scholar
20. Anthopoulos, T. D., Setayesh, S., Smits, E., Cölle, M., Cantatore, E., Boer, B. de, Blom, P. W. M. and Leeuw, D. de, Adv. Mater. 18 1900 (2006)10.1002/adma.200502677Google Scholar
21. Bonfiglio, A., Mameli, F. and Sanna, O., Appl. Phys. Lett. 82 3550 (2002)Google Scholar
22. Santato, C., Manunza, I., Bonfiglio, A., Cicoria, F., Cosseddu, P., Zamboni, R. and Muccini, M. Appl. Phys. Lett. 86 141106 (2005)10.1063/1.1898429Google Scholar
23. Loi, A., Manunza, I. and Bonfiglio, A., Appl. Phys. Lett. 82 103512 (2005)10.1063/1.1873051Google Scholar
24. Cosseddu, P. and Bonfiglio, A., Appl. Phys. Lett. 88 023506 (2006)10.1063/1.2166487Google Scholar
25. Cosseddu, P. and Bonfiglio, A., Thin Solid Films 515 7551 (2007)10.1016/j.tsf.2006.11.182Google Scholar
26. Zhang, F. J., Vollmer, A., Zhang, J., Xu, Z., Rabe, J. P., Koch, N., Org. Electron. 8 606 (2007)10.1016/j.orgel.2007.04.010Google Scholar
27. Cosseddu, P., Bonfiglio, A., Salzmann, I., Rabe, J. P. and Koch, N., Org. Electron. accepted for publicationGoogle Scholar