Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T09:36:58.374Z Has data issue: false hasContentIssue false

Aligned Carbon Nanotubes Via Microwave Plasma Enhanced Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

H. Cui
Affiliation:
Curriculum in Applied and Materials Science, University of North Carolina, Chapel Hill, NC 27599, hcui@physics.unc.edu
D. Palmer
Affiliation:
MCNC Materials and Electronic Technologies, RTP, NC 27709
O. Zhou
Affiliation:
Curriculum in Applied and Materials Science, University of North Carolina, Chapel Hill, NC 27599, hcui@physics.unc.edu Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599
B. R. Stoner
Affiliation:
Curriculum in Applied and Materials Science, University of North Carolina, Chapel Hill, NC 27599, hcui@physics.unc.edu Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599
Get access

Abstract

Aligned multi-wall carbon nanotubes have been grown on silicon substrates by microwave plasma enhanced chemical vapor deposition using methane/ammonia mixtures. The concentration ratio of methane/ammonia in addition to substrate temperature was varied. The morphology, structure and alignment of carbon nanotubes were studied by scanning electron microscopy and transmission electron microscopy. Both concentric hollow and bamboo-type multi-wall carbon nanotubes were observed. Growth rate, size distribution, alignment, morphology, and structure of carbon nanotubes changed with methane/ammonia ratio and growth temperature. Preliminary results on field emission properties are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Iijima, S., Nature 354, 56(1991)Google Scholar
2. Dresselhaus, M. S., Nature 358, 195(1992)Google Scholar
3. Rinzler, A. G., Hafner, J. H., Nikolaev, P., Lou, L., Kim, S. G., Tomanek, D., Nordlander, P., Colbert, D. T., Smalley, R. E., Science 269, 1550(1995)Google Scholar
4. Dillon, A. C., Jones, K. M., Bekkedahl, T. A., Kiang, C. H., Bethune, D. S., Heben, M. J., Nature 386, 377(1997)Google Scholar
5. Niu, C., Sichel, E. K., Hoch, R., Moy, D., Tennent, H., Appl. Phys. Lett. 70, 1480(1997)Google Scholar
6. Tans, S. J., Verschueren, A. R. M., Dekker, C., Nature 393, 49(1998)Google Scholar
7. Saito, Y., Uemura, S., Hamaguchi, K., Jpn. J. Appl. Phys. 37, L346(1998)Google Scholar
8. Wang, Q. H., Corrigan, T. D., Dai, J. Y., Chang, R. P. H., Krauss, A. R., Appl. Phys. Lett. 70, 3308(1997)Google Scholar
9. Zhu, W., Bower, C., Zhou, O., Kochanski, G., Jin, S., Appl. Phys. Lett 75, 873(1999)Google Scholar
10. Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Cheng, H. M., Dresselhaus, M. S., Science 286, 1127(1999)Google Scholar
11. Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., Zhao, R. A., Wang, G., Science 274, 1701(1996)Google Scholar
12. Terrones, M., Grobert, N., Olivares, J., Zhang, J. P., Terrones, H., Kordatos, K., Hsu, W. K., Hare, J. P., Townsend, P. D., Prassides, K., Cheetham, A. K., Kroto, H. W., Walton, D. R. M., Nature 388, 52(1997)Google Scholar
13. Huang, Z. P., Xu, J. W., Ren, Z. F., Wang, J. H., Siegal, M. P., Provencio, P. N., Appl. Phys. Lett, 73, 3845(1998)Google Scholar
14. Fan, S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., Dai, H., Science 283, 512(1999)Google Scholar
15. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., Provencio, P. N., Science 282, 1105(1998)Google Scholar