Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-25T22:29:54.571Z Has data issue: false hasContentIssue false

AlGaN-Based Microwave Transmit and Receive Modules

Published online by Cambridge University Press:  15 March 2011

John C. Zolper*
Affiliation:
Office of Naval Research, code 312 Arlington, VA 22217, zolperj@onr.navy.mil
Get access

Abstract

AlGaN High Electron Mobility Transistors (HEMTs) have made great progress for solid state power amplifiers with the demonstration of an X-band power density up to 9.8 W/mm. This high power density is the result of the high current and voltage capability of this material system. Recently, it has also been shown that these devices can achieve low microwave added noise figures (NF = 0.6 dB at 10 GHz) while maintaining a large breakdown voltage (>60 V) and hence a large dynamic range. These results imply that AlGaN HEMTs can be used to perform the active transmit and receive functions in more robust, higher dynamic range modules. In this paper, the progress in AlGaN microwave HEMTs is reviewed and the issues related to AlGaN transmit and receive (T/R) modules are described.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Johnson, E. O., RCA Rev, 26, 163 (1965).Google Scholar
2 Baliga, B. J., IEEE Trans. Electron. Dev. Vol. 10, 455 (1989)Google Scholar
3 Thibeault, B. J., Keller, B. P., Wu, F.-F., Fini, P., Mishra, U. K., Nguyen, C., Nguyen, N. X., Le, M., IEDM 1997, Washington, DC, p 569 (1997).Google Scholar
4 Bykhovski, A., Gelmont, B., and Shur, M., J. Appl. Phys. 74, 6734 (1993).Google Scholar
5 Asbeck, P. M., Yu, E. T., Lau, S. S., Sullivan, G. J., Hove, J. Van, and Redwing, J., Electronic Letts., 33, 1230 (1997).Google Scholar
6 Carrano, J. C., Lambert, D. J. H., Eiting, C. J., Collins, C. J., Li, T., Wang, S., Wang, B., Beck, A. L., Dupuis, R. D., and Campbell, J. C..Google Scholar
7 Asnin, V. M., Pollak, F. H., Ramer, J., Shurman, M., and Ferguson, I., Appl Phys Letts, 75, 1240 (1999).Google Scholar
8 Wu, Y-F. et al. , Nitride Workshop, Richmond, VA, March 13 to 15, 2000.Google Scholar
9 Asano, K., Miyoshi, Y., Ishihara, K., Nasimoto, Y., Kuzuhara, M., and Mizuta, M., IEEE IEDM 1998, San francisco, CA, p. 59 (1998).Google Scholar
10 Allen, S. T., Pribble, W. L., Sadler, R. A., Alcorn, T. S., Ring, Z., and Palmour, J. W., 1999 IEEE MTT-S, Anaheim, CA, p. 321 (1999).Google Scholar
11 Trew, R. J., IEEE Microwave Magazine, 1, 46 (2000).Google Scholar
12 Onodera, K., Nishimura, K., Aoyama, S., Sugitani, S., Yamane, Y., and Hirano, M., IEEE Trans. Elec. Dev, 46, 310 (1999).Google Scholar
13 Fukui, H., IEEE Trans. Elec. Dev., Ed-26, 1032 (1979).Google Scholar
14 Nguyen, N. X., Micovic, M., wong, W.-S., Hashimoto, P., Janke, P., Harvey, D., and Nguyen, C., Elec. Lett. 36, 358, (2000).Google Scholar
15 Mishra, U., Brown, A. S., Delaney, M. J., Greiling, P. T., and Krumm, C. F., IEEE trans. Micro. Theory and Tech, 37, 1279 (1989).Google Scholar
16 Caverly, R. H. and Heissler, K. J., IEEE Trans. Micro. Theory and Tech., 48, 98 (2000).Google Scholar