Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T16:52:10.475Z Has data issue: false hasContentIssue false

AlGaN Channel HEMT with Extremely High Breakdown Voltage

Published online by Cambridge University Press:  07 July 2011

Takuma Nanjo
Affiliation:
Mitsubishi Electric Corporation, Advanced Technology R & D Center, 8-1-1, Tsukaguchi-honmachi, Amagasaki, Hyogo 661-8661, JAPAN
Misaichi Takeuchi
Affiliation:
Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, JAPAN
Akifumi Imai
Affiliation:
Mitsubishi Electric Corporation, Advanced Technology R & D Center, 8-1-1, Tsukaguchi-honmachi, Amagasaki, Hyogo 661-8661, JAPAN
Yousuke Suzuki
Affiliation:
Mitsubishi Electric Corporation, Advanced Technology R & D Center, 8-1-1, Tsukaguchi-honmachi, Amagasaki, Hyogo 661-8661, JAPAN
Muneyoshi Suita
Affiliation:
Mitsubishi Electric Corporation, Advanced Technology R & D Center, 8-1-1, Tsukaguchi-honmachi, Amagasaki, Hyogo 661-8661, JAPAN
Katsuomi Shiozawa
Affiliation:
Mitsubishi Electric Corporation, Advanced Technology R & D Center, 8-1-1, Tsukaguchi-honmachi, Amagasaki, Hyogo 661-8661, JAPAN
Yuji Abe
Affiliation:
Mitsubishi Electric Corporation, Advanced Technology R & D Center, 8-1-1, Tsukaguchi-honmachi, Amagasaki, Hyogo 661-8661, JAPAN
Eiji Yagyu
Affiliation:
Mitsubishi Electric Corporation, Advanced Technology R & D Center, 8-1-1, Tsukaguchi-honmachi, Amagasaki, Hyogo 661-8661, JAPAN
Kiichi Yoshiara
Affiliation:
Mitsubishi Electric Corporation, Advanced Technology R & D Center, 8-1-1, Tsukaguchi-honmachi, Amagasaki, Hyogo 661-8661, JAPAN
Yoshinobu Aoyagi
Affiliation:
Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, JAPAN
Get access

Abstract

A channel layer substitution of a wider bandgap AlGaN for a conventional GaN in high electron mobility transistors (HEMTs) is an effective method of enhancing the breakdown voltage. Wider bandgap AlGaN, however, should also increase the ohmic contact resistance. Si ion implantation doping technique was utilized to achieve sufficiently low resistive source/drain contacts. The fabricated AlGaN channel HEMTs with the field plate structure demonstrated good pinch-off operation with sufficiently high drain current density of 0.5 A/mm without noticeable current collapse. The obtained maximum breakdown voltages was 1700 V in the AlGaN channel HEMT with the gate-drain distance of 10 μm. These remarkable results indicate that AlGaN channel HEMTs could become future strong candidates for not only high-frequency devices such as low noise amplifiers but also high-power devices such as switching applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Keller, S., Wu, Y-F., Parish, G., Ziang, N., Xu, J. J., Keller, B. P., DenBaars, S. P. and Mishra, U. K., IEEE Trans.Electron Devices 48, 552 (2001).Google Scholar
2. Kikkawa, T., Jpn. J. Appl. Phys., Part 1 44, 4896 (2005).Google Scholar
3. Hikita, M., Yanagihara, M., Nakazawa, K., Ueno, H., Hirose, Y., Ueda, T., Uemoto, Y., Tanaka, T., Ueda, D. and Egawa, T., IEEE Trans.Electron Devices 52, 1963 (2005)Google Scholar
4. Dora, Y., Chakraborty, A., McCarthy, L., Keller, S., DenBaars, S. P. and Mishra, U. K., IEEE Electron Device Lett. 27, 713 (2006)Google Scholar
5. Tipirneni, N.. Koudymov, A., Adivarahan, V., Yang, J., Simin, G. and Khan, M. A., IEEE Electron Device Lett. 27, 716 (2006)Google Scholar
6. Suh, C. S., Dora, Y., Fichtenbaum, N., McCarthy, L., Keller, S., and Mishra, U. K., Tech. Dig. - Int. Electron Devices Meet. (2006).Google Scholar
7. Choi, Y. C., Shi, J., Pophristic, M., Spencer, M. G. and Eastman, L. F., J. Vac. Sci. Technol. B 25, 1836 (2007)Google Scholar
8. Uemoto, Y., Shibata, D., Yanagihara, M., Ishida, H., Matsuo, H., Nagai, S., Batta, N., Li, M., Ueda, T., Tanaka, T., and Ueda, D., Tech. Dig. - Int. Electron Devices Meet. (2007).Google Scholar
9. Morita, T., Yanagihara, M., Ishida, H., Hikita, M., Kaibara, K., Matsuo, H., Uemoto, Y., Ueda, T., Tanaka, T. and Ueda, D., Tech. Dig. - Int. Electron Devices Meet. (2007).Google Scholar
10. Ikeda, N., Niiyama, Y.. Kambayashi, H., Sato, Y., Nomura, T., Kato, S. and Yoshida, S., Proc. IEEE, 98, 1151 (2010)Google Scholar
11. Suita, M., Nanjo, T., Oishi, T., Abe, Y. and Tokuda, Y., Phys. Status Solidi C 3, 2364 (2006)Google Scholar
12. Oishi, T., Miura, N., Suita, M., Nanjo, T., Abe, Y., and Ozeki, T., Ishikawa, H., Egawa, T.andJimbo, T., J. Appl. Phys. 94, 1662 (2003).Google Scholar
13. Kamo, Y., Kunii, T. Takeuchi, H., Yamamoto, Y., Totsuka, M., Shiga, T., Minami, H., Kitano, T., Miyakuni, S., Oku, T., Inoue, A., Nanjo, T., Tsuyama, Y., Shirahana, R., Iyomasa, K., Yamanaka, K., Ishikawa, T., Takagi, T., Marumoto, K. and Matsuda, Y., 2005 IEEE MTT-S Int. Microwave Symp.Dig. 495 (2005).Google Scholar
14. Higashiwaki, M., Hirose, N. and Matsui, T.: IEEE Electron Device Lett. 26, 139 (2005).Google Scholar
15. Higashiwaki, M., Matsui, T. and Mimura, T.: IEEE Electron Device Lett. 27, 16 (2006).Google Scholar
16. Raman, A., Dasgupta, S., Rajan, S., Speck, J. S. and Mishra, U. K., Jpn. J. Appl. Phys., 47, 3357 (2008)Google Scholar
17. Nanjo, T., Takeuchi, M., Imai, A., Suita, M., Oishi, T., Abe, Y., Yagyu, E., Kurata, T., Tokuda, Y. and Aoyagi, Y., Electron. Lett. 39, 750 (2003).Google Scholar