Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-23T05:43:00.618Z Has data issue: false hasContentIssue false

ALD of Lanthanum Aluminate Using Lanthanum Formamidinate Precursor

Published online by Cambridge University Press:  01 February 2011

Huazhi Li
Affiliation:
huazhili@rohmhaas.com, Rohm and Haas Electronic Materials LLC, Advanced Thin-Film Technologies, 60 Willow Street, North Andover, MA, 01845, United States
Deodatta Vinayak Shenai
Affiliation:
dshenai@rohmhaas.com, Rohm and Haas Electronic Materials LLC, Advanced Thin-Film Technologies, 60 Willow Street, North Andover, MA, 01845, United States
Ralph Pugh
Affiliation:
rpugh@rohmhaas.com, Rohm and Haas Electronic Materials LLC, Advanced Thin-Film Technologies, 60 Willow Street, North Andover, MA, 01845, United States
Jiyoung Kim
Affiliation:
jiyoung.kim@utdallas.edu, University of Texas at Dallas, Materials Science and Engineering, Richardson, TX, 75083, United States
Get access

Abstract

The physical and electrical characteristics of La2O3 and LaAlO3 films, deposited by atomic layer deposition (ALD) and using a new La formamidinate precursor (La-FAMD), were investigated. The La-FAMD precursor has superior thermal stability and is also the most volatile La source available today. The vapor pressure of La-FAMD, maintained at 100 ºC, is approximately 60 times higher than the commercial available source La-THD (THD = tetramethylheptanedionato).

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, X. P., Li, M.-F., Ren, C., Yu, X. F., Shen, C., Ma, H. H., Chin, A., Zhu, C. X., Jiang, N., Yu, M. B., Kwong, D.-L., IEEE Electron Device Lett., 2006, 27, 31.10.1109/LED.2005.859950Google Scholar
2. Alshareef, H. N., Harris, H. R., Wen, H. C., Park, C. S., Huffman, C., Choi, K., Luan, H. F., Majhi, P., Lee, B. H., Jammy, R., Lichtenwalner, D. J., Jur, J. S., Kingon, A. I., IEEE Symposium on VLSI Technology Digest of Technical Papers 2006.Google Scholar
3.(a) Wu, Y. H., Yang, M. Y., Chin, A., Chen, W. J., Kwei, C. M., IEEE Electron Device Lett., 2000, 21, 341. (b) K. J. Hubbard, D. G. Schlom, J. Mater. Chem., 1996, 11, 2757.10.1109/55.847374Google Scholar
4. Nieminen, M., Sajavaara, T., Rauhala, E., Putkonen, M., Ninistö, L., J. Mater. Chem., 2001, 11, 2340.10.1039/b102677cGoogle Scholar
5.(a) Shenai, D. V., Li, H., Wang, Q. M., Gordon, R. G., ALD-2007 Conference, San Diego, 2007. (b) J. S. Lehn, H. Li, R. G. Gordon, D. V. Shenai, ALD-2007 Conference, San Diego, 2007.Google Scholar
6.(a) Lim, B. S., Rahtu, A., Gordon, R. G., Appl. Phys. Lett., 2004, 84, 3957. (b) B. S. Lim, A. Rahtu, J. S. Park, R. G. Gordon, Inorg. Chem., 2003, 42, 7951.10.1063/1.1739272Google Scholar
7.(a) Shenai, D. V.-Khatkhate, DiCarlo, R. L., Ware, R. A., J. Crystal Growth, 2008, 310, 2395. (b) D. V. Shenai, M. L. Timmons, R. L. DiCarlo, G. K. Lemnah, R. S. Stennick, J. Crystal Growth, 2003, 248, 91.10.1016/j.jcrysgro.2007.11.196Google Scholar