Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T10:15:22.802Z Has data issue: false hasContentIssue false

Al Grain Boundary Embrittlement Promoted by Na Impurity: An ab initio Study

Published online by Cambridge University Press:  21 March 2011

Guang-Hong Lu
Affiliation:
Ryoichi Yamamoto Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106-8558, Japan
Masanori Kohyama
Affiliation:
Department of Materials Physics, Osaka National Research Institute, AIST, 1-8-31 Midorigaoka, Ikedashi, Osaka 563-8577, Japan
Rayoichi Yamamoto
Affiliation:
Ryoichi Yamamoto Institute of Industrial Science, University of Tokyo, 7-22-1 Roppongi, Minato-ku, Tokyo 106-8558, Japan
Get access

Abstract

We calculate the electronic structure of AlΣ9 tilt grain boundary with substitutional Na impurity atoms by first principles pseudopotential method. Results show that by Na segregation Al grain boundary expands and the valence charge density decreases significantly along the boundary. There is no stronger bond than metallic bond in the boundary even with Na impurity. We therefore conclude that the mechanism of Na-promoted Al grain boundary embrittlement should be one kind of ‘decohesion model’.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Losch, W., Acta Metallurgica, 27, 1885 (1979)Google Scholar
2. Briant, C.L. and Messmer, R.P., Phil. Mag. B, 42, 569 (1980)Google Scholar
3. Messmer, R.P. and Briant, C.L., Acta. Metall., 30, 457 (1982)Google Scholar
4. Haydock, R., J. Phys. C: Solid State Phys., 14, 3807 (1981)Google Scholar
5. Goodwin, L., Needs, R.J. and Heine, V., Phys. Rev. Lett., 60, 2050 (1988)Google Scholar
6. Goodwin, L., Needs, R.J. and Heine, V., J. Phys: Condens. Matter, 2, 351 (1990)Google Scholar
7. Okada, H. and Kanno, M., Scripta Materialia 37, 781 (1997)Google Scholar
8. Mills, M.J. and Daw, M.S., Mat. Res. Soc. Symp. Prov., 183, 15 (1990)Google Scholar
9. For example, Pickett, W.E., Comput. Phys. Rep., 9 115 (1989)Google Scholar
10. Hohenberg, P. and Kohn, W., Phys. Rev. 136B, 864(1964)Google Scholar
11. Kohn, W. and Sham, L.S., Phys. Rev. 140A, 1133 (1965)Google Scholar
12. Perdew, J.P. and Zunger, A., Phys. Rev. B, 23, 5048 (1981)Google Scholar
13. Bylander, D.M., Kleinman, L. and Lee, S., Phys. Rev. B, 42, 1394 (1990)Google Scholar
14. Troullier, N. and Martins, J.L., Phys. Rev. B, 43, 1993 (1991)Google Scholar
15. Hoekstra, J. and Kohyama, M., Phys. Rev. B, 57, 2334 (1998)Google Scholar
16. Hamann, D.R., Schluter, M. and Chiang, C., Phys. Rev. Lett., 43, 1494 (1979)Google Scholar
17. Bachelet, G.B., Hamman, D.R. and Schluter, M., Phys. Rev. B, 26, 4199 (1982)Google Scholar
18. Dacorogna, M.M. and Cohen, M.L., Phys. Rev. B, 34, 4996, (1986)Google Scholar
19. Louie, S.G., Froyen, S. and Cohen, M.L., Phys. Rev. B, 26, 1738 (1982)Google Scholar
20. Kleinman, L. and Bylander, D.M., Phys. Rev. Lett., 48, 1425 (1982)Google Scholar
21. Lam, P.K. and Cohen, M.L., Phys. Rev. B, 24, 4224 (1981)Google Scholar
22. Kittel, C. Introduction to Solid Physics, seventh edition, (John Wiley & Sons, INC., 1996) pp. 23 Google Scholar
23. Nielsen, O.H. and Martin, R.M., Phys. Rev. B, 32, 3780 (1985)Google Scholar