Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-16T12:25:33.321Z Has data issue: false hasContentIssue false

AFM, XPS and XRD Studies of W Films Growth by Lpcvd Onto Tin Substrates

Published online by Cambridge University Press:  15 February 2011

S. Santucci
Affiliation:
Dipartimento di Fisica Universiti di L'Aquila, 67010 Coppito (AQ) -, Italy
L. Lozzi
Affiliation:
Dipartimento di Fisica Universiti di L'Aquila, 67010 Coppito (AQ) -, Italy
M. Passacantando
Affiliation:
Dipartimento di Fisica Universiti di L'Aquila, 67010 Coppito (AQ) -, Italy
P. Picozzi
Affiliation:
Dipartimento di Fisica Universiti di L'Aquila, 67010 Coppito (AQ) -, Italy
L. Grifoni
Affiliation:
Texas Instruments - Italia - Nucleo Industriale Avezzano, 67051 Avezzano (AQ) -, Italy
R. Diamanti
Affiliation:
Texas Instruments - Italia - Nucleo Industriale Avezzano, 67051 Avezzano (AQ) -, Italy
G. Moccia
Affiliation:
Texas Instruments - Italia - Nucleo Industriale Avezzano, 67051 Avezzano (AQ) -, Italy
R. Alfonsetti
Affiliation:
Texas Instruments - Italia - Nucleo Industriale Avezzano, 67051 Avezzano (AQ) -, Italy
Get access

Abstract

Thin films of W were grown using the low pressure chemical-vapour deposition technique in WF6/SiH4 flow on a TiN layer obtained by annealing in nitrogen atmosphere Ti films for different times. The investigation of W nucleation was followed by Atomic Force Microscopy in air. The Atomic Force images taken after fixed time of exposure of the TiN layer to the WF6/SiH4 flow show, on the surface of the W films, the presence of columnar structures only when the TiN films were obtained with forming times below 100 minutes. To investigate this effect X-ray Photoelectron Spectroscopy depth profile and X-Ray Diffraction measurements were performed on the obtained W/TiN films. The results show the deeper penetration of the nitrogen into the titanium layer with the longer forming time and a non stoichiometric composition of TiN interfacial layer which strongly influences the W nucleation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lee, W. W., Reeves, R. R. and Halstead, J., J. Vac. Sci. Technol. A9, 653 (1991).Google Scholar
2. Jeud, C. A. van der, Jansenn, G. A. C. M., and Radelaar, S., J. Appl. Phys. 72 (4), 1583 (1992).Google Scholar
3. Ammerlaan, J. A. M., Put, P. J. van der and Schoonman, J., J. Appl. Phys. 73, 4631 (1993).Google Scholar
4. Leusink, G. L., Kleijin, C. R., Oosterlaken, T. G. M., Janssen, G. C. A. M. and Radelaar, S., J. Appl. Phys. 72, 490 (1992).Google Scholar
5. Mclnerney, E. J., Mountsies, T. W., Chin, B. L. and Broadbent, E. K., J. Vac. Sci. Technol. B11, 734 (1983)Google Scholar
6. Sivaram, S., Dass, M. L. A., Wei, C. S., Tracy, B. and Shukula, R., J. Vac. Sci. Technol. A11, 87 (1993).Google Scholar
7. Chang, J. C., Thin Solid Films 208, 177 (1992).Google Scholar
8. Chen, S., Sakamoto, A., Tamura, H., Yoshimaru, M. and Ino, M., Jpn. J. Appl. Phys. 32, 1929 (1993).Google Scholar
9. Ting, C. Y., J. Vac. Sci. Technol. 21, 4 (1982); C. Y. Ting, Thin Solid Films 119, 11 (1984).Google Scholar
10. Klein, M. and Gallois, B., Mater. Res. Soc. Symp. Proc. 168, 93 (1990).Google Scholar
11. Igasaki, Y. and Mitsuhashi, H., Thin Solid Films 70, 17 (1980).Google Scholar
12. Koh, Y., Chien, F., and Vora, M., J. Vac. Sci. Technol. B3, 1715 (1985).Google Scholar
13. Kottke, M., Travis, E. O., Rogers, B. R., Pintchovski, F. and Fiordalice, R. J. Vac. Sci. Technol. B10, 1125 (1992).Google Scholar
14. Yu, M. L., Ahn, K. Y. and Joshi, R. V., J. Appl. Phys. 67, 1055 (1990).Google Scholar
15. Kumar, S., Chopra, D. R. and Smith, G. C., J. Vac. Sci. Technol. B10, 1218 (1992).Google Scholar
16. Bozack, M. J., Thin Solid Films 221, 55 (1992).Google Scholar
17. Handbook of X-ray Photoelectron Spectroscopy, edited by Wagner, C. D., Davis, L. E., Moulder, J. F., and Muilenberg, G. E. (Perkin-Elmer, Eden Prairie, MN, 1979).Google Scholar
18. RMS represents the standard deviation of the Z height values into the investigated surface.Google Scholar
19. Hsieh, J. J., J. Vac. Sci. Technol. A11, 3040 (1993).Google Scholar