Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-05T06:11:01.154Z Has data issue: false hasContentIssue false

Aerogel Derived Catalysts

Published online by Cambridge University Press:  10 February 2011

John G. Reynolds
Affiliation:
University of California, Lawrence Livermore National Laboratory, P. O. Box 808, L-369, Livermore, CA 94551, 510–422–6028, 510–423–4289 (fax), reynolds3@llnl.gov
Lucy M. Hair
Affiliation:
University of California, Lawrence Livermore National Laboratory, P. O. Box 808, L-369, Livermore, CA 94551, 510–422–6028, 510–423–4289 (fax), reynolds3@llnl.gov
Paul R. Coronado
Affiliation:
University of California, Lawrence Livermore National Laboratory, P. O. Box 808, L-369, Livermore, CA 94551, 510–422–6028, 510–423–4289 (fax), reynolds3@llnl.gov
Michael W. Droege
Affiliation:
University of California, Lawrence Livermore National Laboratory, P. O. Box 808, L-369, Livermore, CA 94551, 510–422–6028, 510–423–4289 (fax), reynolds3@llnl.gov
Joe Wong
Affiliation:
University of California, Lawrence Livermore National Laboratory, P. O. Box 808, L-369, Livermore, CA 94551, 510–422–6028, 510–423–4289 (fax), reynolds3@llnl.gov
Get access

Abstract

Aerogels are a class of colloidal materials which have high surface areas and abundant mesoporous structure. SiO2 aerogels show unique physical, optical and structural properties. When catalytic metals are incorporated in the aerogel framework, the potential exists for new and very effective catalysts for industrial processes. Three applications of these metal-containing SiO2 aerogels as catalysts are briefly reviewed in this paper — NOx reduction, volatile organic compound destruction, and partial oxidation of methane.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hair, L. M., Owens, L., Tillotson, T., Fröba, M., Wong, J., Thomas, G. J., and Medlin, D. L., J. Non-Crys. Solids 186 (1995) 168176.Google Scholar
2. Owens, L., Tillotson, T. M., and Hair, L. M., Non-Crys. Solids 186, (1995) 177183.Google Scholar
3. Miyata, H., Tokunda, S. and Yoshida, T., Appl. Spectros. 43 (1989) 522.Google Scholar
4. Oyama, S. T., Went, G. T., Lewis, K. B., Beli, A. T. and Somorjai, G. A., J. Phys. Chem. 93 (1989) 6786.Google Scholar
5. Went, G. T., Oyama, S. T. and Beli, A. T., J. Phys. Chem. 94 (1990) 4240.Google Scholar
6. Wong, J., Lytle, F. W., Messmer, R. P. and Maylotte, D. H., Phys. Rev. B30 (1984) 5596.Google Scholar
7. Hair, L. M. and Coronado, P. R., MRS Meeting (1995), Symposium Y, San Francisco, CA Google Scholar
8. Herman, R. G., Catalytic Conversions of Synthetic Gas and Alcohols to Chemicals, Herman, R. G. Ed Plenum Press NY (1984) pp 336.Google Scholar
9. Smith, D. J. H., Petrole et Techniques 1987, 332, 10.Google Scholar
10. Jones, C. A., Leonard, J. J. and Sopfranko, J. A., Energy & Fuels (1987) 1, 12 Google Scholar
11. Hair, L. M. and Droege, M. W., Topical Report Catalytic Conversion of Methane to Liquid Products LLNL Internal Report, August 1991.Google Scholar