Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T22:54:29.840Z Has data issue: false hasContentIssue false

Advantages of high surface area niobium oxide catalysts on MgH2 sorption properties

Published online by Cambridge University Press:  01 February 2011

Vinay V Bhat
Affiliation:
vinay.bhat@gmail.com, LRCS, Chemistry, 33 rue St. Leu, Amiens, N/A, 80039, France, 33 322 827604, 33 322 827590
Aline Rougier
Affiliation:
aline.rougier@sc.u-picardie.fr, U-Picardie, LRCS, 33 rue St Leu, Amiens, Picardie, 80039, France
Luc Aymard
Affiliation:
luc.aymard@sc.u-picardie.fr, U-Picardie, LRCS, 33 rue St Leu, Amiens, Picardie, 80039, France
Gholam A Nazri
Affiliation:
g.nazri@gm.com, GM, Warren, Michigan, 48090-9055, United States
Jean-Marie Tarascon
Affiliation:
jean-marie.tarascon@sc.u-picardie.fr, U-Picardie, LRCS, 33 rue St Leu, Amiens, Picardie, 80039, France
Get access

Abstract

We report the synthesis by ‘chimie douce’ route of high surface area (200 m2/g) nano crystalline Nb2O5 (so called p-Nb2O5) and the importance of its addition to enhance the hydrogen sorption properties of MgH2. All of the prepared Nb2O5 catalysts induce faster kinetics, up to twice the desorption rate, than commonly used commercial Nb2O5. Among them, both p-Nb2O5 and Nb2O5:350 (p-Nb2O5 heated to 350 °C) exhibit the best catalytic activity, since a 5.2 wt% hydrogen desorption was achieved at 300 °C for (MgH2)p−Nb2O5, as compared to less than 4 wt.% for commercial Nb2O5 added MgH2, (MgH2)c−Nb2O5, within 12 min. Furthermore, due to the addition of high surface area Nb2O5, the desorption temperature was successfully lowered down to 200 °C, with a significant amount of desorbed hydrogen (4.5 wt%). In contrast at this “low” temperature, (MgH2)c−Nb2O5 shows no desorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Steele, B.C.H. and Heinzel, A., Nature, 414, 345 (2001).Google Scholar
2. Schlapbach, L. and Züttel, A., Nature, 414, 353 (2001).Google Scholar
3. Züttel, A., Mater. Today September 24 (2003).Google Scholar
4. Zaluska, A., Zaluski, L., and Strom-Olsen, J.O., J. Alloys Compd., 288, 217 (1999)Google Scholar
5. Huot, J., Tremblay, M.-L., and Schulz, R., J. Alloys Compd., 356–357, 603 (2003).Google Scholar
6. Janot, R., Darok, X., Rougier, A., Aymard, L., Nazri, G. A. and Tarascon, J.-M., J. Alloys Compd., 404–406, 293 (2005).Google Scholar
7. Shang, C.X., Bououdina, M., Song, Y., and Guo, Z.X., J. Alloys Compd., 29, 73 (2004).Google Scholar
8. Liang, G., Huot, J., Boily, S., Neste, A. Van, and Schulz, R., J Alloys Compd., 292, 247 (1999).Google Scholar
9. Huot, J., Pelletier, J.F., Lurio, L.B., Sutton, M. and Schulz, R., J. Alloys Compd., 348, 319 (2003).Google Scholar
10. Charbonnier, J., Rango, P. de, Fruchart, D., Miraglia, S., Skryabina, N., Huot, J., Hauback, B., Pitt, V. and Rivoirard, S., 404, 541 (2005).Google Scholar
11. Bobet, J.-L., Akiba, E., and Darriet, B., I. J. Hyd. Energy, 26, 493 (2001).Google Scholar
12. Yavari, A.R., LeMoulec, A., Castro, F.R. de, Deledda, S., Friedrichs, O., Botta, W.J., Vaughan, G., Klassen, T., Fernandez, A., Kvick, A., Scripta Mater., 52, 719 (2005).Google Scholar
13. Bhat, V.V., Rougier, A., Aymard, L., Darok, X., Nazri, G. A., and Tarascon, J-M., J. of Power Sources (accepted).Google Scholar
14. Barkhordarian, G., Klassen, T., and Bormann, R., J. Alloys Compd., 364, 242 (2004).Google Scholar
15. Barkhordarian, G., Klassen, T., and Bormann, R., Scripta Mater, 49, 213 (2003).Google Scholar
16. Hanada, N., Ichikawa, T., Hino, S., and Fujji, H., J. Alloys Compd., in pressGoogle Scholar
17. Barkhordarian, G., Klassen, T., and R. J. Bormann, J. Alloys Compd., 407, 249 (2006)Google Scholar
18. Schimmel, H. Gijis, Huot, J., Chapon, L.C., Tichelaar, F.D., and Mulder, F.M., J. Am. Chem. Soc., 1127, 14348 (2005).Google Scholar
19. Prakash, A.S., Binotto, G., Larcher, D., and Tarascon, J.-M., J. Mater. Chem., submitted.Google Scholar
20. Norskov, J.K., Houmoller, A., Johansson, P.K., and Lundqvist, B.I., Phys. Rev. Lett., 46, (1981) 257.Google Scholar
21. Friedrichs, O., Klassens, T., Sanchez-Lopez, J.C., Bormann, R., Fernandez, A., Scripta Mater., 54, 1293 (2006).Google Scholar