Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T00:28:14.042Z Has data issue: false hasContentIssue false

Advances in the Low Temperature Preparation and Structural Characterization of Lanthanum Strontium Manganite Powder

Published online by Cambridge University Press:  21 March 2011

Sophie Guillemet-Fritsch
Affiliation:
Centre Inter-universitaire de Recherche et d'Ingénierie des Matériaux (CIRIMAT)/ UMR CNRS 5085, LCMIE, Université Paul Sabatier, Bât. 2R1-118, Route de Narbonne 31062, Toulouse Cedex, France
Hervé Coradin
Affiliation:
Centre Inter-universitaire de Recherche et d'Ingénierie des Matériaux (CIRIMAT)/ UMR CNRS 5085, LCMIE, Université Paul Sabatier, Bât. 2R1-118, Route de Narbonne 31062, Toulouse Cedex, France
Antoine Barnabé
Affiliation:
Centre Inter-universitaire de Recherche et d'Ingénierie des Matériaux (CIRIMAT)/ UMR CNRS 5085, LCMIE, Université Paul Sabatier, Bât. 2R1-118, Route de Narbonne 31062, Toulouse Cedex, France
Christophe Calmet
Affiliation:
Centre Inter-universitaire de Recherche et d'Ingénierie des Matériaux (CIRIMAT)/ UMR CNRS 5085, LCMIE, Université Paul Sabatier, Bât. 2R1-118, Route de Narbonne 31062, Toulouse Cedex, France
Philippe Tailhades
Affiliation:
Centre Inter-universitaire de Recherche et d'Ingénierie des Matériaux (CIRIMAT)/ UMR CNRS 5085, LCMIE, Université Paul Sabatier, Bât. 2R1-118, Route de Narbonne 31062, Toulouse Cedex, France
Abel Rousset
Affiliation:
Centre Inter-universitaire de Recherche et d'Ingénierie des Matériaux (CIRIMAT)/ UMR CNRS 5085, LCMIE, Université Paul Sabatier, Bât. 2R1-118, Route de Narbonne 31062, Toulouse Cedex, France
Get access

Abstract

Perovskite oxides of formula La1−xSrxMnO3 have been obtained by the thermal decomposition of precursor powders. Two different kinds of precursors, carbonates and citrates have been prepared by low temperature, i.e., “chimie douce” technique. The careful control of the chemical and the hydrodynamic parameters during the synthesis process allows obtaining nice homogeneous and small size particles (80 nm for the ex-carbonates and 30 nm for ex-citrates). Pure perovskite phase is observed after a low temperature thermal treatment, from 550 °C. The structure of these oxides is either rhombohedral or cubic and depends on the strontium content, the temperature and the partial pressure of oxygen during the thermal treatment. The Mn-O distances and the Mn-O-Mn angles are directly related to the amount of Mn4+ content.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Huesco, L.E., Rivadulla, F., Sanchez, R.D., Caeiro, D., Jardon, C., Vazquez-Vazquez, C., Rivas, J., Lopez-Quintela, M.A., J. Magn. Magn. Mater. 189, 321 (1998).10.1016/S0304-8853(98)00257-1Google Scholar
2. Zhang, N., Ding, W.P., Zhong, W., Du, D.Y., Phys. Rev. B 56, 8138 (1997).10.1103/PhysRevB.56.8138Google Scholar
3. Twu, J., Gallagher, P.K. «Properties and applications of perovskite-type oxides» ed. by Tejuca, L.G., Fierro, J.L.G., (1993).Google Scholar
4. Fritsch, S., Sarrias, J., Brieu, M., Couderc, J.J., Baudour, J.L., Snoeck, E. and Rousset, A., Solid State Ionics 109, 229 (1998).10.1016/S0167-2738(98)00080-0Google Scholar
5. Chanel, C., Guillemet-Fritsch, S., Sarrias, J. and Rousset, A., Int. J. Inorg. Mat. 2, 24 (2000).10.1016/S1466-6049(00)00025-8Google Scholar
6. Maurin, I., Barboux, P., Lassailly, Y., Boilot, J.P., Key Engineering Materials 132–136, 1357 (1997).Google Scholar
7. Butler, V., Catlow, C.R., Fender, B.E.F., Harding, J.H., Solid State Ionics 8, 109 (1982).Google Scholar
8. Cook, R.L., Sammells, A.F., Solid State Ionics 45, 311 (1991).Google Scholar
9. Roosmalen, J.A.M. Van, Cordfunke, E.H.P. and Helmholdt, R. B., J. Solid State Chem. 110, 100 (1994).Google Scholar
10. Verelst, M., Rangavittal, N., Rao, C.N.R, and Rousset, A., J. Solid State Chem. 104, 74 (1993).Google Scholar
11. Huang, Q.; Santoro, A.; Lynn, J.W.; Erwin, R.W.; Borchers, J.A.; Peng, J.L.; Greene, R.L., Phys. Rev. B 55, 14987 (1997).Google Scholar
12. Roosmalen, J.AM. Van; Vlaanderen, P.Van; Cordfunke, E.H.P.; IJdo, W.L., IJdo, D.J.W., Solid State Chem. 114, 516 (1995).10.1006/jssc.1995.1078Google Scholar
13. Rodríguez-Carvajal, J., Hennion, M.; Moussa, M.; Moudden, A.H.; Pinsard, L.; Revcolevschi, A., Phys. Rev. B 57, R3189 (1998).Google Scholar
14. Töpfer, J., Goodenough, J.B., J. Solid State Chem. 134, 117 (1997).Google Scholar
15. Ritter, C., Ibarra, M.R.; Teresa, J.M. De; Algarabel, P.A.; Marquina, C., Blasco, J., García, J.; Oseroff, S., Cheong, S.W. Phys. Rev. B 56, 8902 (1997).Google Scholar
16. Mitchell, J.F., Argyriou, D.N., Potter, C.D.; Hinks, D.G., Jorgensen, J.D., Bader, S.D., Phys. Rev. B 54, 6172 (1996).Google Scholar
17. Pinsard, L., Revcolevschi, A.; Rodríguez-Carvajal, J., J. Alloy Compd 262–263, 152 (1997).Google Scholar
18. Rodriguez-Carvajal, J., Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, 127 (1990).Google Scholar
19. Szabo, G., Thesis, Lyon (1969).Google Scholar
20. Huang, Y-H., Xu, Z-G., Yan, C-H., Wang, Z-M., Zhu, T., Liao, C-S., Gao, S., Xu, G-X., Solid State Comm. 114, 43 (2000).10.1016/S0038-1098(99)00575-XGoogle Scholar
21. Glazer, A.M., Acta Cryst. B 28, 3384 (1972), Acta Cryst. A 31, 756 (1975).10.1107/S0567740872007976Google Scholar
22. Urushibara, A., Moritomo, Y., Arima, T., Asamitsu, A., Kido, G., Tokura, Y., Phys. Rev. B 51, 14103 (1995).Google Scholar
23. Shannon, R.D., Acta Cryst. A 32, 751 (1976).10.1107/S0567739476001551Google Scholar