Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-27T03:44:18.323Z Has data issue: false hasContentIssue false

Advances in AlGaN-based Deep UV LEDs

Published online by Cambridge University Press:  01 February 2011

M. H. Crawford
Affiliation:
Semiconductor Material and Device Sciences Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
A. A. Allerman
Affiliation:
Advanced Material Sciences Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
A. J. Fischer
Affiliation:
Semiconductor Material and Device Sciences Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
K. H. A. Bogart
Affiliation:
Advanced Material Sciences Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
S. R. Lee
Affiliation:
Semiconductor Material and Device Sciences Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
W. W. Chow
Affiliation:
Semiconductor Material and Device Sciences Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
S. Wieczorek
Affiliation:
Semiconductor Material and Device Sciences Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
R. J. Kaplar
Affiliation:
Semiconductor Material and Device Sciences Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
S. R. Kurtz
Affiliation:
Semiconductor Material and Device Sciences Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
Get access

Abstract

Materials studies of high Al-content (> 30%) AlGaN epilayers and the performance of AlGaN-based LEDs with emission wavelengths shorter than 300 nm are reported. N-type AlGaN films with Al compositions greater than 30% reveal a reduction in conductivity with increasing Al composition. The reduction of threading dislocation density from the 1–5 × 1010 cm-2 range to the 6–9 × 109cm-2 range results in an improvement of electrical conductivity and Al0.90Ga0.10N films with n= 1.6e17 cm-3 and μ=20 cm2/Vs have been achieved. The design, fabrication and packaging of flip-chip bonded deep UV LEDs is described. Large area (1 mm × 1 mm) LED structures with interdigitated contacts demonstrate output powers of 2.25 mW at 297 nm and 1.3 mW at 276 nm when operated under DC current. 300 μm × 300 μm LEDs emitting at 295 nm and operated at 20 mA DC have demonstrated less than 50% drop in output power after more than 2400 hours of operation. Optimization of the electron block layer in 274 nm LED structures has enabled a significant reduction in deep level emission bands, and a peak quantum well to deep level ratio of 700:1 has been achieved for 300 μm × 300 μm LEDs operated at 100 mA DC. Shorter wavelength LED designs are described, and LEDs emitting at 260 nm, 254nm and 237 nm are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shaw, G. A., Siegel, A. M., Model, J., Nischan, M., Proc. SPIE 5417, 250 (2004).Google Scholar
2. Li, Q., Dasgupta, P. K., Temkin, H., Crawford, M. H., Fischer, A. J., Allerman, A. A., Bogart, K. H. A., and Lee, S. R., Appl. Spectroscopy 58, 1360 (2004).Google Scholar
3. McClusky, M. D., Johnson, N. M., Van de Walle, C. G., Bour, D. P., and Kneissl, M., Phys. Rev. Lett 80, 4008 (1998).Google Scholar
4. Van de Walle, C. G., Sampfl, C., Neugebauer, J., McClusky, M. D. and Johnson, N. M., MRS Internet J. Nitride Semicond. Res. 4S1, G10.4 (1999).Google Scholar
5. Sun, W. H., Zhang, J. P., Adivarahan, V., Chitnis, A., Shatalov, M., Wu, S., Mandavilli, V., Yang, J. W. and Khan, M. A., Appl. Phys. Lett. 85, 531 (2004).Google Scholar
6. Fischer, A. J., Allerman, A. A., Crawford, M. H., Bogart, K. H. A., Lee, S. R., Kaplar, R. J., Chow, W. W., Kurtz, S. R., Fullmer, K. W. and Figiel, J. J., Appl. Phys. Lett. 84, 3394 (2004).Google Scholar
7. Yasan, A., McClintock, R., Mayes, K., Shiell, D., Gautero, L., Darvish, S. R., Kung, P., and Razeghi, M., Appl. Phys. Lett. 83, 4701 (2003).Google Scholar
8. Adivarahan, V., Wu, S., Zhang, J. P., Chitnis, A., Shatalov, M., Mandavilli, V., Gaska, R., and Asif Khan, M., Appl. Phys. Lett. 84, 4762 (2004).Google Scholar
9. Kipshidze, G., Kuryatkov, V., Zhu, K., Borisov, B., Holtz, M., Nikishin, S., and Temkin, H., J. Appl. Phys. 93, 1363 (2003).Google Scholar
10. Hanlon, A., Pattison, P. M., Kaeding, J. F., Sharma, R., Fini, P. and Nakamura, S., Jpn. J. Appl. Phys. 42, L628 (2003).Google Scholar
11. Wang, H. M., Zhang, J. P., Chen, C. Q., Fareed, Q., Yang, J. W. and Asif Khan, M., Appl. Phys. Lett. 81, 604606 (2002).Google Scholar
12. Lee, S. R., West, A. M., Allerman, A. A., Waldrip, K. E., Follstaedt, D. M., Provencio, P. P., Koleske, D. D. and Abernathy, C. R., submitted to Appl. Phys. Lett.Google Scholar
13. Selvanathan, D., Zhou, L., Kumar, V., Long, J. P., Johnson, M. A. L., Schetzina, J. F. and Adesida, I., Electron. Lett. 38, 755 (2002).Google Scholar
14. Khorakakis, D., Ng, H. M., Ludwig, K. F. Jr, and Moustakas, T. D., Mat. Res. Soc. Symp. Proc. 449, 233 (1997).Google Scholar
15. Taniyasu, Y., Kasu, M. and Kobayashi, N., Appl. Phys. Lett. 81, 12551257 (2002).Google Scholar
16. Shatalov, M., Chitnis, A., Mandavilli, V., Pachipulusu, R., Zhang, J. P., Adivarahan, V., Wu, S., Simin, G., Asif Khan, M., Tamulaitis, G., Sereika, A., Yilmaz, I., Shur, M. S. and Gaska, R. S., Appl. Phys. Lett. 82, 167169 (2003).Google Scholar
17. Crawford, M. H., Allerman, A. A., Fischer, A. J., Bogart, K. H. A., Lee, S. R., Kaplar, R. J., Chow, W. W., and Follstaedt, D. M., Proc. SPIE 5366, 75 (2004).Google Scholar
18. Adivarahan, V., Sun, W. H., Chitnis, A., Shatalov, M., Wu, S., Maruska, H. P. and Asif Khan, M., Appl. Phys. Lett. 85, 2175 (2004).Google Scholar
19. Wu, S., Adivarahan, V., Shatalov, M., Chitnis, A., Sun, W.-H., and Asif Khan, M., Japan. J. Appl. Phys. 43, L1035 (2004).Google Scholar