Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T00:01:29.244Z Has data issue: false hasContentIssue false

Adhesion In NiAl-Cr From First Principles

Published online by Cambridge University Press:  15 February 2011

James E. Raynolds
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109–2136
John R. Smith
Affiliation:
Physical Department, General Motors Research Laboratories, Warren, Michigan, 48090
David J. Srolovitz
Affiliation:
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109–2136
G.-L. Zhao
Affiliation:
Dept. of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803.
Get access

Abstract

We have calculated the work of adhesion (i.e. energy for rigid fracture) and peak interfacial stress for NiAl, Cr, and NiAl–Cr using self-consistent density functional calculations to obtain the complete energy vs. separation curve for each system. Our calculations indicate that the work of adhesion is largest for Cr and smallest for NiAI while those for interfaces of NiAI with Cr are intermediate. We have also estimated that segregation processes could alter the work of adhesion for the AlNi/Cr interface by up to 20% since Al tends to segregate to the free NiAl surface while Ni tends to segregate to the AlNi/Cr interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Miracle, D. B., Acta Metall. 41,649 (1993).Google Scholar
2. Noebe, R. D., Bowman, R. R., and Nathal, M. V., Int. Mater. Rev. 38, 193 (1993).Google Scholar
3. Chen, X. F., Johnson, D. R., Noebe, R. D., Oliver, B. F., J. Matter. Res. 10, 1159 (1995).Google Scholar
4. Johnson, D. R., Chen, X. F., Oliver, B. F., Noebe, R. D., and Whittenberger, J. D., Intermetallics 3, 99 (1995).Google Scholar
5. Darolia, R., JOM 43, 44 (1991).Google Scholar
6. Merchant, S. M., and Notis, M. R., Mater. Sci. and Eng. 66 47 (1984).Google Scholar
7. Cline, H. E. and Walter, J. L., Met. Trans. 1, 2907 (1970).Google Scholar
8. Raynolds, J. E., Smith, J. R., Zhao, G. -L., and Srolovitz, D. J. (submitted to Phys. Rev. B).Google Scholar
9. Smith, J. R., Gay, J. G., and Arlinghaus, F. J., Phys. Rev. B 21, 2201 (1980).Google Scholar
10. Hong, T., Smith, J. R., Srolovitz, D. J., Gay, J. G., and Richter, R., Phys. Rev. B 45, 8775 (1992).Google Scholar
11. Hong, T., Smith, J. R., and Srolovitz, D. J., Phys. Rev. B 47, 13615 (1993).Google Scholar
12. Hong, T., Smith, J. R., and Srolovitz, D. J., J. Adhesion Sci. Technol. 8, 837 (1994).Google Scholar
13. Banerjea, A. and Smith, J. R., Phys. Rev. B 37, 6632 (1988); also see P. Vinet, J. H. Rose, J. Ferrante, and J. R. Smith, J. Phys. 1, 1941 (1989).Google Scholar
14. Actually the surface atomic layer is composed of 35% Ni atoms (see section 3.3.3 of Ref. 1).Google Scholar
15. Wawra, H., Z. Metallkd. 66, 375 (1974).Google Scholar
16. Richter, R., Smith, J. R., and Gay, J. G., in The Structure of Surfaces, edited by Hove, M. A. Van and Tong, S. Y. (Springer-Verlag, New York, 1983), p. 35.Google Scholar
17. Wawra, H., Z. Metallkd. 66, 395401, 492–498 (1975).Google Scholar
18. Walter, J. L. and Cline, H. E., Met. Trans. 1, 1221 (1970).Google Scholar