Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-11T08:24:01.283Z Has data issue: false hasContentIssue false

Activation of Si-N Modes in Silicon by Pulsed Laser Annealing*

Published online by Cambridge University Press:  25 February 2011

H. J. Stein
Affiliation:
Sandia National LaboratoriesAlbuquerque, NM87185
P. S. Peercy
Affiliation:
Sandia National LaboratoriesAlbuquerque, NM87185
C. R. Hills
Affiliation:
Sandia National LaboratoriesAlbuquerque, NM87185
Get access

Abstract

Retention and bonding of nitrogen implanted into crystalline Si were examined by infrared absorption (ir) and transmission electron microscopy (TEM) after furnace and pulsed laser annealing. Localized Si-N vibrational modes for N-N pairs are observed, and the associated ir band intensities increase upon pulsed annealing. Furnace annealing above 600°C decreases the ir intensity for N-N pairs and fine structure defects appear in TEM. Subsequent laser annealing removes most of the fine structure and reactivates the pair spectrum which we interpret as dissolution of N precipitates and pair formation upon quenching from the melt. Any realistic model for N in Si must include the formation and consequences of N-N pairs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work performed at Sandia National Laboratories supported by the U.S. Department of Energy under contract number DE-AC04-76DP00789.

References

REFERENCES

1. Abe, T.. Kikuchi, K., Shirai, S. and Murako, S., "Semiconductor Silicon 1981," edited by Huff, H. R. and Kriegler, R. J., The Electrochemic. Soc. Inc., Pennington, NJ (1981), p. 54.Google Scholar
2. Zimmer, G. and Vogt, H., IEEE Trans. on Electr. Devices, ED-30, 1515 (1983).Google Scholar
3. Brower, K. L., Phys. Rev. B26, 6040 (1982).Google Scholar
4. Tajima, M., Masui, T., Abe, T. and Nozaki, T., Jap.J. Appl. Phys. 20, 6423 (1983).Google Scholar
5. Tokumara, Y., Okushi, H., Masui, T. and Abe, T., Jap. J. Appl. Phys. 21, L443 (1982).Google Scholar
6. Alt, H.Ch. and Tapfer, L., Appl. Phys. Letts. 45, 426 (1984).Google Scholar
7. Sprenger, M., Sieverts, E. G., Muller, S. H. and Ammerlaan, C.A.J., Solid State Comm. 51, 951 (1984).Google Scholar
8. Stein, H. J., Appl. Phys. Letts. 43, 296 (1983); Stein, H. J., Proc. of 13th Intl. Conf. on Defects in Semiconductors, Coronado, CA, 8/12-17/84 (to be published).Google Scholar
9. Stein, H. J., Electrochem. Soc. Extended Abstract #117, Vol. 84–1, accepted for publication in J.Electrochem. Soc Google Scholar
10. Stein, H. J. and Peercy, P. S., Materials Research Society Symposium Proceedings, Vol. 13, edited by Narayan, J., Brown, W. L. and Lemons, R. A., Elsevier Sci. Pub. Co., Inc. (1983), p. 229.Google Scholar
11. Drowley, C. I. and Kamins, T. I., Materials Research Society Symposium Proceedings, Vol. 13, edited by Narayan, J., Brown, W. L., Lemons, R. A., Elsevier Sci. Pub. Co., Inc., (1983), p. 511.Google Scholar
12. Smith, T. P., III, Stiles, P. J., Augustynaik, W. M., Brown, W. L., Jacobson, D. C. and Kant, R. A., Materials Research Society Symposium Proceedings, Vol. 23, edited by Fan, J.C.C. and Johnson, N. M., Elsevier Sci. Pub. Co. Inc., (1984), p. 453.Google Scholar