Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-25T06:05:41.159Z Has data issue: false hasContentIssue false

Activation Energy and Blistering Rate in Hydrogen-implanted Semiconductors

Published online by Cambridge University Press:  30 March 2012

Daniel J. Pyke
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia.
Robert G. Elliman
Affiliation:
Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia.
Jeffrey C. McCallum
Affiliation:
Microanalytical Research Centre, School of Physics, University of Melbourne, VIC 3010, Australia.
Get access

Abstract

Hydrogen blister rates in Si (100), Si (111) and Ge (100) substrates are compared as a function of annealing temperature and time, for a range of implant energies and fluences. For each material, the rate of blister formation was found to exhibit Arrhenius behavior and to be characterised by a single activation energy over the temperature range examined. The extracted activation energies were 2.28±0.03 eV, 2.17±0.06 eV and 1.4±0.03 eV for (100) Si; (111) Si and (100) Ge, respectively. These results are compared with reported measurements and discussed in relation to proposed models of hydrogen blistering.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tong, Q.W., Gutjahr, K., Gosele, U, & Lee, T.H., Appl. Phys. Lett., 70 (11) 13902 (1997).Google Scholar
2. Beddell, S.W. and Lanford, W.A., Journal of Applied Physics, 90 (3) 113846 (2001).Google Scholar
3. Letertre, F., Deguet, C., Richtarch, C., Faure, B., Hartmann, J., Chieu, F., Beaumont, A., Dechamp, J., Morales, C., Allibert, F., Perreau, P., Pocas, S., Personnic, S., Lagahe-Blanchard, C., Ghyselen, B., Le Vaillant, Y.M., Kernevez, N. and Mazure, C. in High-Mobility Group IV Materials and Devices, edited by Caymax, M., Rim, K., Zaima, S., Kasper, E. and Fichtner, P.F.P., (Mater. Res. Soc. Proc. 809, San Francisco, CA, 2004) pp. 153158.Google Scholar
4. Zheng, Y., Lau, S.S., Hochbauer, T., Misra, A., Verda, R., He, X.M., Nastasi, M. and Mayer, J.W., Journal of Applied Physics, 89(5) 29722978 (2001).Google Scholar
5. Han, W.H. and Yu, J.Z., Journal of Applied Physics, 89 (11) 65516553 (2001).Google Scholar
6. Aspar, B., Moriceau, H., Jalaguier, E., Lagahe, C., Soubie, A., Biasse, B., Papon, A.M., Claverie, A., Grisolia, J., Benassayag, G., Letertre, F., Rayssac, O., Barge, T., Maleville, C. and Ghyselen, B., Journal of Electronic Materials, 30 (7) 834840, (2001).Google Scholar
7. Terreault, B., Phys. Stat. Solidi A – Applications and Materials Science, 204 7, 2129, (2007).Google Scholar
8. Hochbauer, T., Misra, A., Nastasi, M., Henttinen, K., Suni, T., Suni, I., Lau, S.S. and Ensinger, W., Nucl. Instrum. Meth. B216, 257263, (2004).Google Scholar
9. Nastasi, M., Hochbauer, T., Lee, J.K., Misra, A., Hirth, J.P., Ridgway, M. and Lafford, T., Applied Physics Letters, 86, 15, (2005).Google Scholar
10. Frabboni, S., Physical Review B, 65, 16, 5436, (2002).Google Scholar
11. Hochbauer, T., Misra, A., Nastasi, M. and Mayer, J.W., J. Appl. Phys., 92, 5, 2335, (2002).Google Scholar
12. Rice, B.M., Raff, L.M. and Thompson, D.L., J. Chem. Phys., 88, 11, 7221, (1988).Google Scholar
13. Ma, Y., Huang, Y.L., Job, R. and Fahrner, W.R., Phys. Rev. B, 71, 4, (2005).Google Scholar
14. Leitch, A.W.R., Alex, V. and Weber, J., Solid State Comm., 105, 4, 215, (1998).Google Scholar