Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-17T11:28:38.801Z Has data issue: false hasContentIssue false

Acceptor Delta-Doping for Schottky Barrier Enhancement on n-Type GaAs

Published online by Cambridge University Press:  25 February 2011

S. J. Pearton
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
F. Ren
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
A. Katz
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
W. S. Hobson
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
S. N. G. Chu
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. Kovalchick
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

The incorporation of thin C- or Zn-doped layers under metal Schottky contacts on n-type GaAs can lead to significant enhancements in the effective barrier height. A single C δ-doped layer (p = 1.3 × 1020 cm–3) within 100 Å of the surface leads to a barrier height of ∼0.9 eV, a significant increase over the value for a control sample (∼0.75 eV). The use of two sequential δ-doped layers can lead either to a further enhancement in barrier height, or a decrease depending on whether these layers are fully depleted at zero applied bias. The temperature dependence of current conduction in barrier-enhanced diodes was measured. Both the ideality factor and breakdown voltage degrade with increasing temperature. Zinc δ-doping in a similar fashion produces barrier heights of 0.81 eV for one spike and 0.95 eV for two spikes.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Spicer, W. E., Lindau, I., Skeath, P.R., Su, C. Y., and Thye, P., Phys. Rev. Lett. 44, 420 (1980).CrossRefGoogle Scholar
[2] Stanchina, W. E., Clark, M. D., Vaidyanathan, K. V., Jullens, R. A., and Crowell, C. R., J. Electrochem. Soc. 134, 967 (1987).CrossRefGoogle Scholar
[3] Priddy, K. L., Kitchen, D. R., Grzyb, J. A., Litton, C. W., Henderson, T. S., Peng, C.-K., Kopp, W. F., and Morkoc, H., IEEE Electron Devices ED–34, 175 (1987).CrossRefGoogle Scholar
[4] Crowell, C. R., J. Vac. Sci. Technol. 11, 951 (1974).CrossRefGoogle Scholar
[5] Shannon, J. M., Solid-State Electron. 19, 537 (1976).CrossRefGoogle Scholar
[6] Shannon, J. M., Appl. Phys. Lett. 25, 75 (1974).CrossRefGoogle Scholar
[7] Eglash, S. J., Pan, S., Mo, D., Spicer, W. E., and Collins, D. M., Jpn. J. Appl. Phys. 22, 431 (1983).CrossRefGoogle Scholar
[8] Van der Ziel, A., Solid-State Electron. 20, 269 (1977).CrossRefGoogle Scholar
[9] Eglash, S. J., Newman, N., Pan, S., Shenai, K., Spicer, W. E., and Collins, D. M., J. Appl. Phys. 61, 5159 (1987).CrossRefGoogle Scholar
[10] Saito, K., Tokumitsu, E., Akasuka, T., Miyauchi, M., Yamada, T., Konagai, M. K., and Takahashi, K., J. Appl. Phys. 64, 3975 (1988).CrossRefGoogle Scholar
[11] Kobayashi, N., Makimoto, T., and Horikoshi, Y., Appl. Phys. Lett. 50 1435 (1987).CrossRefGoogle Scholar
[12] Eizenberg, M., Callegari, A. C., Sadana, D. K., Hovel, H. J., and Jackson, T. N., Appl. Phys. Lett. 54, 1696 (1989).CrossRefGoogle Scholar