Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-zkswk Total loading time: 0.602 Render date: 2022-11-27T02:51:00.146Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

ZnGeP2 and its Relation to Other Defect Semiconductors

Published online by Cambridge University Press:  10 February 2011

A. W. Vere
Affiliation:
Defence Evaluation and Research Agency (DERA), St Andrews Road, Malvern, Worcestershire, WR14 3PS, UKawvere@dera.gov.uk
L. L. Taylor
Affiliation:
Defence Evaluation and Research Agency (DERA), St Andrews Road, Malvern, Worcestershire, WR14 3PS, UKawvere@dera.gov.uk
P. C. Smith
Affiliation:
Defence Evaluation and Research Agency (DERA), St Andrews Road, Malvern, Worcestershire, WR14 3PS, UKawvere@dera.gov.uk
C. J. Flynn
Affiliation:
Defence Evaluation and Research Agency (DERA), St Andrews Road, Malvern, Worcestershire, WR14 3PS, UKawvere@dera.gov.uk
M. K. Saker
Affiliation:
Defence Evaluation and Research Agency (DERA), St Andrews Road, Malvern, Worcestershire, WR14 3PS, UKawvere@dera.gov.uk
J. Jones
Affiliation:
Defence Evaluation and Research Agency (DERA), St Andrews Road, Malvern, Worcestershire, WR14 3PS, UKawvere@dera.gov.uk
Get access

Abstract

The paper discusses progress in the development of ZnGeP2 (ZGP) for optical parametric oscillator (OPO) applications and draws parallels with other semiconductors with volatile components, in which the presence of lattice defects gives rise to non-stoichiometry. In particular, attention is drawn to the microprecipitation which accompanies deviation from stoichiometry. In other materials this has been shown to result in spatial non-uniformity in the density of point defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Masumoto, K., Isomura, S. and Goto, W., J. Phys. Chem. Sol. 27, p1939 (1966).CrossRefGoogle Scholar
2. Beuhler, E., Wernick, J. and Wiley, T., J. Electron. Mater. 2 (3) p.445 (1973)CrossRefGoogle Scholar
3. Vodopyamov, K. L., Voevodin, V. G., Gribenyukov, A. I. and Kulevskii, L. A., Sov. J. Quantum Electron., 17, p1159 (1987).CrossRefGoogle Scholar
4. Feigelson, R. S. and Route, R. K., J. Cryst. Growth, 49, p261 (1980).CrossRefGoogle Scholar
5. Xing, C. C. and Bachmann, K. J., J. Cryst. Growth, 147, p35 (1995).CrossRefGoogle Scholar
6. Schunemann, P. G. and Pollak, T. M., OSA Proceedings on Advanced Solid State Lasers, 10, (Eds. Dubé, G. and Chase, L.), Hilton Head South Carolina, March 18–20 (1991).Google Scholar
7. Verozubova, G. A., Gribenyukov, A. I., Korotkova, V. V. and Ruzaikin, M. P., Proc. Internat Workshop on Stoichiometry in Compound Semiconductors, Bad Suhl, Germany 1995 (unpublished)Google Scholar
8. Schunemann, P. G., Budni, P. A., Pomeranz, L., Knights, M.G., Pollak, T.M. and Chicklis, E.P. in Advanced Solid State Lasers, edited by Pollock, C.R. and Bosenberg, W.R. OSA Top. Proc. 10 pp253255 (1997)Google Scholar
9. Halliburton, C. E., Edwards, G. J., Scripsick, P. P., Rakowsky, M. P., Schunemann, P. G. and Pollak, T. M., Appl. Phys. Lett., 66 (20), p2670 (1995).CrossRefGoogle Scholar
10. Dietz, N., Tsveybak, I., Ruderman, W., Wood, G. and Bachmann, K. J., Appl. Phys. Lett., 65 (22), p2759 (1994).CrossRefGoogle Scholar
12. Chen, NuoFu, He, Hongjia, Wang, Yutian and Lin, Lanying, J. Cryst. Growth, 173, p325 (1997).CrossRefGoogle Scholar
13. Cullis, A. G., Augustus, P. D., Stirland, D. J., J. Appl. Phys., 51, p2556 (1980).CrossRefGoogle Scholar
14. Pautrat, J. L., Magnea, N. and Faurie, J. P., J. Appl. Phys., 53 (12), p8668 (1982).CrossRefGoogle Scholar
15. Williams, D. J. and Vere, A. W., J. Vac. Sci. Technol., A4 (4), p2184 (1986).CrossRefGoogle Scholar
16. Vere, A. W., Crystal Growth, Principles and Progress, Plenum Press, London & New York (1987) pp2950 CrossRefGoogle Scholar
17. Gentile, A. L. and Stafsudd, D. M., Mater. Res. Bull., 9, p105 (1974).CrossRefGoogle Scholar
18. Smith, M. and Grant, I. R., MCP Wafer Technology Final Report UK Government DRA Contract MAL 16/23 10, July 1986.Google Scholar
19. Bliss, D. F., Harris, M., Horrigan, J., Higgins, M. M., Armington, A. F. and Adamski, J. A., J. Cryst. Growth, 137, p145 (1994).CrossRefGoogle Scholar
20. Mykytiuk, A. and Semeniuk, P., NRC Institute for Environmental Chemistry, Canada (unpublished).Google Scholar
21. Hobgood, H. M., Henningsen, T., Thomas, R. N., Hopkin, R. H., Ohmer, M. C., Mitchel, W. C.. Fischer, D. W., Hegde, S. M. and Hopkins, F. K., J. Appl. Phys., 73 (8), p4030 (1993).CrossRefGoogle Scholar
22. Peter Schunemann, G. and Pollak, Thomas M., U.S. Patent No. 5 611 856 (18 March 1997)Google Scholar
23. Vere, A. W., Taylor, L. L., Smith, P. C., Flynn, C. J., Saker, M. K. and Terry, J. A. C., IOP proceedings of the 11 th International Conference on Ternary and Multinary Components, Salford, UK (1997) - In press.Google Scholar
24. Gribenyukov, A., Verozubova, G. and Korotkova, V. - private communication.Google Scholar
25. Fewster, P. F. and Andrew, N. L., J. Appl. Cryst., 28, p 451 (1995).CrossRefGoogle Scholar
26. Ray, B., Payne, A. J. and Burrell, G. F., Phys. Stat. Sol., 35, p197 (1969).CrossRefGoogle Scholar
27. Voevodin, V.G. and Voevodina, O.V., J. Russ. Phys. 36 (10) p924 (1993)CrossRefGoogle Scholar
28. Hurle, D. T. J., Materials Science Forum, 196–201, p179 (1995).CrossRefGoogle Scholar
29. de Nobel, D., Philips Research Rev. 14 (4), p361 (1959).Google Scholar
30. Brown, G. T., Cockayne, B. and MacEwan, W. R., J. Electron. Mater., 12, p93 (1983).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

ZnGeP2 and its Relation to Other Defect Semiconductors
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

ZnGeP2 and its Relation to Other Defect Semiconductors
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

ZnGeP2 and its Relation to Other Defect Semiconductors
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *