Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-16T19:41:23.336Z Has data issue: false hasContentIssue false

X-ray Photoemission Determination of the Surface Fermi Level Motion and Pinning on n- and p-GaN during the Formation of Au, Ni, and Ti Metal Contacts

Published online by Cambridge University Press:  21 March 2011

Kimberly A. Rickert
Affiliation:
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
Jong Kyu Kim
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
Jong-Lam Lee
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
Franz J. Himpsel
Affiliation:
Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706
Arthur B. Ellis
Affiliation:
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
T. F. Kuech
Affiliation:
Department of Chemical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
Get access

Abstract

Synchrotron radiation-based x-ray photoemission spectroscopy was used to study the Fermi level position within the band gap for thin metal overlayers of Au, Ni, and Ti on n-GaN and p-GaN. The Fermi level position was determined with the measured Fermi edge of the metal on the sample in order to correct for the presence of non-equilibrium effects. There are two different behaviors observed for the three metals studied. For Au and Ti, the surface Fermi positions on n-GaN and p-GaN are roughly 0.5 eV apart within the band gap. For Ni, the n-GaN and p-GaN have a Schottky barrier that forms at the same place at the gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., MRS Bulletin 22 (2)), 2935 (1997).10.1557/S088376940003253XGoogle Scholar
2. Nakamura, S., The blue laser diode: The complete story (Springer, Berlin, 2000).10.1007/978-3-662-04156-7Google Scholar
3. Binari, S. C., Doverspike, K., Kelner, G. et al., Solid State Electronics 41 (2)), 177180 (1997).Google Scholar
4. Sun, J., Rickert, K. A., Redwing, J. M. et al., Appl. Phys. Lett. 76 (4)), 415417 (2000).Google Scholar
5. Rickert, K. A., Jingxi Sun, Ellis, A. B. et al., Appl. Phys. Lett. to be published (2001).Google Scholar
6. Lee, J. -L., Kim, J. K., Lee, J. W. et al., Phys. Stat. Sol. A 176, 763766 (1999).Google Scholar
7. Kim, J. K., Lee, J. -L., Lee, J. W. et al., J. Vac. Sci. Technol. B 17, 497499 (1999).10.1116/1.590584Google Scholar
8. Kim, Jong Kyu, Kim, Ki-Jeong, Kim, Bongsoo et al., J. Electron. Mater. 30 (3)), 129133 (2001).10.1007/s11664-001-0005-3Google Scholar
9. Suzue, K., Mohammad, S. N., Fan, Z. F. et al., J. Appl. Phys. 80 (8)), 44674478 (1996).10.1063/1.363408Google Scholar
10. Kaminska, E., Piotrowska, A., Guziewicz, M. et al., Mater. Res. Soc. Symp. Proc. 449, 10551060 (1997).10.1557/PROC-449-1055Google Scholar
11. Binari, S. C., Dietrich, H. B., Kelner, G. et al., Electron. Lett. 30 (11)), 909911 (1994).10.1049/el:19940565Google Scholar
12. Piquette, E. C., Bandic, Z. Z., and McGill, T. C., Mater. Res. Soc. Symp. Proc. 482, 10891094 (1998).Google Scholar
13. Schmitz, A. C., Ping, A. T., Khan, M. Asif et al., J. Electron. Mater. 27 (4)), 255260 (1998).10.1007/s11664-998-0396-5Google Scholar
14. DeLucca, J. M., Mohney, S. E., Auret, F. D. et al., J. Appl. Phys. 88 (5)), 25932600 (2000).10.1063/1.1287605Google Scholar
15. Qiao, D., Yu, L. S., Lau, S. S. et al., J. Appl. Phys. 88, 41964200 (2000).10.1063/1.1311809Google Scholar
16. Mistele, D., Fedler, F., Klausing, H. et al., J. Cryst. Growth 230, 564568 (2001).10.1016/S0022-0248(01)01250-7Google Scholar
17. Kwak, J. S., Mohney, S. E., Lin, J.-Y. et al., Semicond. Sci. Technol. 15, 756760 (2000).Google Scholar
18. King, D. J., Zhang, L., Ramer, J. C. et al., Mater. Res. Soc. Symp. Proc. 468, 421426 (1997).10.1557/PROC-468-421Google Scholar
19. Chen, L. -C., Ho, J, -K., Jong, C.-S. et al., Appl. Phys. Lett. 76, 37033705 (2000).Google Scholar
20. Jang, J. -S., Chang, I. -S., Kim, H.-K. et al., Appl. Phys. Lett. 74, 7072 (1999).Google Scholar
21. Kim, T., Yoo, M. C., and Kim, T., Mater. Res. Soc. Symp. Proc. 449, 10611065 (1997).10.1557/PROC-449-1061Google Scholar
22. Ruvimov, S., Liliental-Weber, Z., Washburn, J. et al., Appl. Phys. Lett. 69, 15561558 (1996).10.1063/1.117060Google Scholar
23. Lee, J. -L. and Kim, J. K., J. Electrochem. Soc. 147 (6)), 22912302 (2000).Google Scholar
24. Liu, Q. Z., Yu, L. S., Deng, F. et al., J. Appl. Phys. 84 (2)), 881886 (1998).10.1063/1.368151Google Scholar
25. Liu, Q. Z., Shen, L., Smith, K. V. et al., Appl. Phys. Lett. 70, 990992 (1997).10.1063/1.118458Google Scholar
26. Hüfner, Stefan, Photoelectron Spectroscopy, 2 ed. (Springer-Verlag, Berlin, 1996).10.1007/978-3-662-03209-1Google Scholar
27. Himpsel, F. J., Surf. Sci. Rep. 12 (1)), 148 (1990).10.1016/0167-5729(90)90005-XGoogle Scholar
28. Alonso, M., Cimino, R., and Horn, K., Phys. Rev. Lett. 64 (16)), 19471950 (1990).10.1103/PhysRevLett.64.1947Google Scholar
29. Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts, 2nd ed. (Oxford University Press, Oxford, 1988).Google Scholar