Skip to main content Accessibility help
×
Home
Hostname: page-component-cf9d5c678-cnwzk Total loading time: 0.245 Render date: 2021-07-30T03:45:28.909Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

X-ray Photoemission Determination of the Surface Fermi Level Motion and Pinning on n- and p-GaN during the Formation of Au, Ni, and Ti Metal Contacts

Published online by Cambridge University Press:  21 March 2011

Kimberly A. Rickert
Affiliation:
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
Jong Kyu Kim
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
Jong-Lam Lee
Affiliation:
Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784, Korea
Franz J. Himpsel
Affiliation:
Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706
Arthur B. Ellis
Affiliation:
Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706
T. F. Kuech
Affiliation:
Department of Chemical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
Get access

Abstract

Synchrotron radiation-based x-ray photoemission spectroscopy was used to study the Fermi level position within the band gap for thin metal overlayers of Au, Ni, and Ti on n-GaN and p-GaN. The Fermi level position was determined with the measured Fermi edge of the metal on the sample in order to correct for the presence of non-equilibrium effects. There are two different behaviors observed for the three metals studied. For Au and Ti, the surface Fermi positions on n-GaN and p-GaN are roughly 0.5 eV apart within the band gap. For Ni, the n-GaN and p-GaN have a Schottky barrier that forms at the same place at the gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., MRS Bulletin 22 (2)), 2935 (1997).10.1557/S088376940003253XGoogle Scholar
2. Nakamura, S., The blue laser diode: The complete story (Springer, Berlin, 2000).10.1007/978-3-662-04156-7Google Scholar
3. Binari, S. C., Doverspike, K., Kelner, G. et al., Solid State Electronics 41 (2)), 177180 (1997).Google Scholar
4. Sun, J., Rickert, K. A., Redwing, J. M. et al., Appl. Phys. Lett. 76 (4)), 415417 (2000).Google Scholar
5. Rickert, K. A., Jingxi Sun, Ellis, A. B. et al., Appl. Phys. Lett. to be published (2001).Google Scholar
6. Lee, J. -L., Kim, J. K., Lee, J. W. et al., Phys. Stat. Sol. A 176, 763766 (1999).Google Scholar
7. Kim, J. K., Lee, J. -L., Lee, J. W. et al., J. Vac. Sci. Technol. B 17, 497499 (1999).10.1116/1.590584Google Scholar
8. Kim, Jong Kyu, Kim, Ki-Jeong, Kim, Bongsoo et al., J. Electron. Mater. 30 (3)), 129133 (2001).10.1007/s11664-001-0005-3Google Scholar
9. Suzue, K., Mohammad, S. N., Fan, Z. F. et al., J. Appl. Phys. 80 (8)), 44674478 (1996).10.1063/1.363408Google Scholar
10. Kaminska, E., Piotrowska, A., Guziewicz, M. et al., Mater. Res. Soc. Symp. Proc. 449, 10551060 (1997).10.1557/PROC-449-1055Google Scholar
11. Binari, S. C., Dietrich, H. B., Kelner, G. et al., Electron. Lett. 30 (11)), 909911 (1994).10.1049/el:19940565Google Scholar
12. Piquette, E. C., Bandic, Z. Z., and McGill, T. C., Mater. Res. Soc. Symp. Proc. 482, 10891094 (1998).Google Scholar
13. Schmitz, A. C., Ping, A. T., Khan, M. Asif et al., J. Electron. Mater. 27 (4)), 255260 (1998).10.1007/s11664-998-0396-5Google Scholar
14. DeLucca, J. M., Mohney, S. E., Auret, F. D. et al., J. Appl. Phys. 88 (5)), 25932600 (2000).10.1063/1.1287605Google Scholar
15. Qiao, D., Yu, L. S., Lau, S. S. et al., J. Appl. Phys. 88, 41964200 (2000).10.1063/1.1311809Google Scholar
16. Mistele, D., Fedler, F., Klausing, H. et al., J. Cryst. Growth 230, 564568 (2001).10.1016/S0022-0248(01)01250-7Google Scholar
17. Kwak, J. S., Mohney, S. E., Lin, J.-Y. et al., Semicond. Sci. Technol. 15, 756760 (2000).Google Scholar
18. King, D. J., Zhang, L., Ramer, J. C. et al., Mater. Res. Soc. Symp. Proc. 468, 421426 (1997).10.1557/PROC-468-421Google Scholar
19. Chen, L. -C., Ho, J, -K., Jong, C.-S. et al., Appl. Phys. Lett. 76, 37033705 (2000).Google Scholar
20. Jang, J. -S., Chang, I. -S., Kim, H.-K. et al., Appl. Phys. Lett. 74, 7072 (1999).Google Scholar
21. Kim, T., Yoo, M. C., and Kim, T., Mater. Res. Soc. Symp. Proc. 449, 10611065 (1997).10.1557/PROC-449-1061Google Scholar
22. Ruvimov, S., Liliental-Weber, Z., Washburn, J. et al., Appl. Phys. Lett. 69, 15561558 (1996).10.1063/1.117060Google Scholar
23. Lee, J. -L. and Kim, J. K., J. Electrochem. Soc. 147 (6)), 22912302 (2000).Google Scholar
24. Liu, Q. Z., Yu, L. S., Deng, F. et al., J. Appl. Phys. 84 (2)), 881886 (1998).10.1063/1.368151Google Scholar
25. Liu, Q. Z., Shen, L., Smith, K. V. et al., Appl. Phys. Lett. 70, 990992 (1997).10.1063/1.118458Google Scholar
26. Hüfner, Stefan, Photoelectron Spectroscopy, 2 ed. (Springer-Verlag, Berlin, 1996).10.1007/978-3-662-03209-1Google Scholar
27. Himpsel, F. J., Surf. Sci. Rep. 12 (1)), 148 (1990).10.1016/0167-5729(90)90005-XGoogle Scholar
28. Alonso, M., Cimino, R., and Horn, K., Phys. Rev. Lett. 64 (16)), 19471950 (1990).10.1103/PhysRevLett.64.1947Google Scholar
29. Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts, 2nd ed. (Oxford University Press, Oxford, 1988).Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

X-ray Photoemission Determination of the Surface Fermi Level Motion and Pinning on n- and p-GaN during the Formation of Au, Ni, and Ti Metal Contacts
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

X-ray Photoemission Determination of the Surface Fermi Level Motion and Pinning on n- and p-GaN during the Formation of Au, Ni, and Ti Metal Contacts
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

X-ray Photoemission Determination of the Surface Fermi Level Motion and Pinning on n- and p-GaN during the Formation of Au, Ni, and Ti Metal Contacts
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *