Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-5sfl8 Total loading time: 0.422 Render date: 2022-12-04T09:53:48.176Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

What can we Learn from Molecular Dynamics Simulations of Macromolecular Liquids?

Published online by Cambridge University Press:  21 February 2011

Gary S. Grest
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Company, Annandale, NJ 08801
Kurt Kremer
Affiliation:
Institut für Festerkörperforschung der Kernforschungsanlage Jülich, D-5170 Jülich, Federal Republic of Germany
Michael Murat
Affiliation:
Corporate Research Science Laboratories, Exxon Research and Engineering Company, Annandale, NJ 08801
Get access

Abstract

We describe how molecular dynamics simulations for a relatively simple coarse grained model can be very useful for investigating the static and dynamic properties of polymers and other macromolecular liquids. We show that it is important to use a simplified coarse grained model instead of a detailed microscopic model if one is interested in studying on modern supercomputers large systems which also relax slowly. As examples we present results for isolated star polymers with f-arms and diluted gelation/percolation clusters. We find in agreement with recent neutron scattering experiments that diluted percolation clusters swell and that their fractal dimension is reduced from 2.5 to 2. We also discuss our results for a dense melt of entangled linear polymers to show that the method is effective at high density. Our results for the entangled melt cover the crossover from Rouse to reptation and strongly support the concept of reptation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. deGennes, P. G., Scaling Concepts in Polymer Physics (Cornell Univ. Press, Ithaca, NY, 1979).Google Scholar
2. Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986).Google Scholar
3. Binder, K., in Molecular Level Calculations of the Structure and Properties of Non-Crystalline Polymers, edited by Biscerano, J. (Dekker, New York, 1989).Google Scholar
4. Edwards, S. F., Proc. Phys. Soc. 92, 9 (1980).CrossRefGoogle Scholar
5. deGennes, P. G., J. Chem. Phys. 55, 572 (1971).CrossRefGoogle Scholar
6. Kremer, K. and Grest, G. S., in Computer Simulations of Polymers, edited by R. J. Roe (to be published).Google Scholar
7. Kolinski, A., Skolnick, J., and Yaris, R., J. Chem. Phys. 86, 1567 (1987).CrossRefGoogle Scholar
8. Kremer, K. and Binder, K., Comp. Phys. Rept. 7, 261 (1989).Google Scholar
9. Kremer, K., Grest, G. S., and Carmesin, I., Phys. Rev. Lett. 61, 566 (1988); K. Kremer and G. S. Grest, J. Chem. Phys., 1990.CrossRefGoogle Scholar
10. Rigby, D. and Roe, R. J., J. Chem. Phys. 87, 7285 (1987); 89, 5280 (1988).CrossRefGoogle Scholar
11. Clarke, J. H. R. and Brown, D., Mol. Sim. 3, 27 (1989).CrossRefGoogle Scholar
12. Balazs, A. C., Anderson, C., and Muthukumar, M., Macromolecules 20, 1999 (1987).CrossRefGoogle Scholar
13. Carmesin, I. and Kremer, K., Macromolecules 21, 2819 (1988).CrossRefGoogle Scholar
14. Dünweg, B. and Kremer, K., in preparation.Google Scholar
15. Grest, G. S., Dünweg, B., and Kremer, K., Comp. Phys. Comm. 55, 269 (1989).CrossRefGoogle Scholar
16. Daoud, M. and Cotton, J. P., J. Phys. (Paris) 43, 531 (1982).CrossRefGoogle Scholar
17. Birshtein, T. M., Zhulina, E. B., and Borisov, O. V., Polymer 27, 1078 (1986).CrossRefGoogle Scholar
18. Rouse, P. E., J. Chem. Phys. 21, 1273 (1953).CrossRefGoogle Scholar
19. Murat, M. and Grest, G. S., Phys. Rev. Lett. 63, 1074 (1989); Macromolecules 22, 4054 (1989).CrossRefGoogle Scholar
20. Chakrabarti, A. and Toral, R., (to be published).Google Scholar
21. Grest, G. S. and Kremer, K., Phys. Rev. A 33, 3628 (1986).CrossRefGoogle Scholar
22. Bird, R. B., Armstrong, R. C., and Hassager, O., Dynamics of Polymeric Liquids (Wiley, New York, 1977), Vol.1.Google Scholar
23. Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ (1971).Google Scholar
24. Burchard, W., Adv. Polym. Sci. 48, 1 (1983).CrossRefGoogle Scholar
25. Bauer, B. J., Fetters, L. J., Graessley, W. W., Hadjichristidis, N., and Quack, G. F., Macromolecules 22, 2337 (1989).CrossRefGoogle Scholar
26. Crest, G. S., Kremer, K., and Witten, T. A., Macromolecules 20, 1376 (1987).Google Scholar
27. Grest, G. S., Kremer, K., Milner, S. T., and Witten, T. A., Macromolecules 22, 1904 (1989).CrossRefGoogle Scholar
28. Richter, D., Farago, B., Fetters, L. J., Huang, J., and Ewen, B., Macromolecules (1990).Google Scholar
29. Batoulis, J. and Kremer, K., Europhys. Lett. 7, 683 (1988).CrossRefGoogle Scholar
30. Daoud, M., Family, F., and Jannink, G., J. Phys. Lett. (Paris) 45, 199 (1984).CrossRefGoogle Scholar
31. Flory, P., Statistical Mechanics of Chain Molecules, (Interscience, New York, 1969).CrossRefGoogle Scholar
32. Cates, M. E., Phys. Rev. Lett. 53, 926 (1984).CrossRefGoogle Scholar
33. Stauffer, D., J. Chem. Soc. Faraday Trans. 272, 1354 (1976).CrossRefGoogle Scholar
34. Alexander, S. and Orbach, R., J. Phys. Lett. (Paris) 43, L625 (1982).CrossRefGoogle Scholar
35. Rammal, R. and Toulouse, G., J. Phys. Lett. (Paris) 44, L13 (1983).CrossRefGoogle Scholar
36. Grest, G. S. and Murat, M., (to be published).Google Scholar
37. Adam, M., Delsanti, M., Munch, J. P., and Durand, D., J. Phys. (Paris) 48, 1809 (1987).CrossRefGoogle Scholar
38. Bouchaud, E., Delsanti, M., Adam, M., Daoud, M. and Durand, D., J. Phys. (Paris) 47, 1273 (1986).CrossRefGoogle Scholar
39. Lin, M. Y., Lindsay, H. M., Weitz, D. A., Ball, R. C., Klein, R., and Meakin, P., Nature 339, 360 (1989).CrossRefGoogle Scholar
40. Abraham, F. F., Rudge, W. E., and Plischke, M., Phys. Rev. Lett. 62, 1757 (1989).CrossRefGoogle Scholar
41. Kantor, Y., Kardar, M., and Nelson, D. R., Phys. Rev. Lett. 57, 791 (1986); Phys. Rev. A 35, 3056 (1987).CrossRefGoogle Scholar
42. Abraham, F. F. and Nelson, D. R., (to be published).Google Scholar
43. Baumgärtner, A., Ann. Rev. Phys. Chem. 35, 419 (1984).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

What can we Learn from Molecular Dynamics Simulations of Macromolecular Liquids?
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

What can we Learn from Molecular Dynamics Simulations of Macromolecular Liquids?
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

What can we Learn from Molecular Dynamics Simulations of Macromolecular Liquids?
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *