Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T05:50:25.050Z Has data issue: false hasContentIssue false

Visible Light Emission in Silicon-Interface Adsorbed Gas Superlattices

Published online by Cambridge University Press:  28 February 2011

Raphael Tsu
Affiliation:
University of North Carolina at Charlotte, Charlotte, NC 28223
Jonder Morais
Affiliation:
University of North Carolina at Charlotte, Charlotte, NC 28223
Amanda Bowhill
Affiliation:
University of North Carolina at Charlotte, Charlotte, NC 28223
Get access

Abstract

Having an indirect fundamental bandgap, unlike III-V or II-VI compound semiconductors, silicon has not played a role in optoelectronic applications such as injection lasers and light emitting diodes. In an attempt to introduce a sufficient quantum size effect, we present the experimental results on a new type of silicon based superlattices consisting of alternating layers of silicon and monolayers of adsorbed gases, Si/IAG multilayers (Si/Interface Adsorbed Gas), constructed by repeated interruptions of silicon deposition with adsorbed gases of oxygen and hydrogen. Fairly strong visible luminescence has been observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Canham, L. T., Appl. Phys. Lett. 57 10461048 (1990).Google Scholar
2 Lehmann, V., and Gösele, U., Appl. Phys. Lett. 58 856858 (1991).Google Scholar
3 Babic, D. and Tsu, R., to be published.Google Scholar
4 Tsu, R., Shen, H., and Dutta, M., Appl. Phys. Lett. 60 112114 (1992).Google Scholar
5 Prokes, S. M., Freitas, J. A., and Searson, P. C., Appl. Phys. Lett. 60 32953297 (1992).Google Scholar
6 See for example: Kanemitsu, Y., Phys. Rev. B 49 1684516848 (1994).Google Scholar
7 Esaki, L. and Tsu, R., IBM J. of Res. and Dev. 14 6165 (1970).Google Scholar
8 Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 32 265273 (1976).Google Scholar
9 Osburn, G. C., J. Appl. Phys. Lett. 57 15861589 (1982).Google Scholar
10 Tsu, R., Nature 364 19 (1993).Google Scholar
11 Tsu, R., Morais, J., and Bowhill, A., in Porous Silicon, Eds. Feng, Z. C. and Tsu, R. (World Scientific 1994), P. 443448.Google Scholar
12 Tsu, R., Hernandez, J. G., Chao, S. S. and Martin, D., Appl. Phys. Lett. 48 647649 (1986).Google Scholar
13 Pollak, F. H. and Tsu, R., Proc. SPIE 452 2642 (1984).Google Scholar
14 Hernandez, J. G. Azarbayejani, G. H., Tsu, R. and Pollak, F. H., Appl. Phys. Lett. 47 13501352 (1985).Google Scholar
15 Cole, M. W. et al. , Appl. Phys. Lett. 60 28002802 (1992).Google Scholar
16 Tsu, R., in Defects in Semiconductors, Eds. Narayan, and Tan, (North-Holland, Inc. 1981), P. 445449.Google Scholar
17 Dolling, G., in Elastic Scattering of Neutrons, Proc. Symp. Chalk River, 2, 3742 (1972).Google Scholar
18 Alben, R., Weaire, D., E., Smith J. and Brodsky, M. H., Phys. Rev. B 11 22712296 (1975).Google Scholar
19 Richter, H., Wang, Z. P., and Ley, L., Solid State Comm. 39 625 (1981).Google Scholar
20 Campbell, I. H. and Faucher, P. M., Solid State Comm. 58 739 (1986).Google Scholar
21 Zhang, D., Kolbas, R. M., Milewski, P. D., Lichtenwalner, D. J., Kingon, A. I., and Zavada, J. M., to appear in Appl. Phys. Lett. Google Scholar
22 Filios, , Adam, , MS thesis at UNC-Charlotte, 1994.Google Scholar
23 Stathis, J. H. and Kastner, M. A., Phys. Rev. B 35 2972 (1987).Google Scholar
24 See for example: Fauchet, P. M., in Porous Silicon, Eds. Feng, Z. C. and Tsu, R. (World Scientific 1994), P. 449465.Google Scholar
25 Anedda, A., et al. , J. Appl. Phys. 74 6993 (1993).Google Scholar
26 Street, R. A. and Biegelsen, D. K., Solid Satate Comm 33 11591162 (1980).Google Scholar