Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-09-15T18:16:10.009Z Has data issue: false hasContentIssue false

Vibrational modes of graphitic fragments and the nucleation of carbon nanotubes

Published online by Cambridge University Press:  15 March 2011

Manuela Volpe
Affiliation:
also with Dipartimento Scienze e Tecnologie Chimiche, UniversitáTor Vergata, Roma, Italy
Fabrizio Cleri
Affiliation:
also with Istituto Nazionale per la Fisica della Materia, Roma, Italy
Gregorio D'Agostino
Affiliation:
Ente Nuove Tecnologie, Energia e Ambiente, Divisione Materiali Centro Ricerche Casaccia, CP 2400, I-00100 Roma, ItalyEnte Nuove Tecnologie, Energia e Ambiente, High-Performance Computing Project Centro Ricerche Casaccia, CP 2400, I-00100 Roma, Italy
Vittorio Rosato
Affiliation:
also with Istituto Nazionale per la Fisica della Materia, Roma, Italy
Get access

Abstract

We studied the nucleation mechanism of carbon nanotubes based on the hypothesis that the starting nanotube seed can be nucleated by rolling a small fragment of a graphite sheet (graphene) under thermal fluctuations. The energy barriers for rolling a graphene along different crystallographic directions are calculated from a tight-binding model,. We then estimate the relative weight of the large-amplitude fluctuations corresponding to low-frequency vibrational modes of graphene sheets of increasing size. Direct molecular dynamics simulation of the high- temperature fluctuation of a pair of parallel graphenes demonstrates that a nanotube closed at one end can spontaneously form. We discuss the combined effects due to: (a) the decrease of the energy barriers against rolling with increasing nanotube radius, and (b) the increase of random fluctuations with increasing size of the graphene sheet. The superposition of such effects may lead to a preferential range of nanotube diameters which could nucleate more abundantly than others.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ijima, S. and Saito, S., Science 245, 334 (1991).Google Scholar
2. Fournet, C. et al. , Nature 388, 756 (1997).Google Scholar
3. Ishigami, M., Cumings, J., Zettle, A. Chen, S., Chem. Phys. Lett. 319, 457 (2000).Google Scholar
4. Smalley, R. E. et al. , Nature 403, 384 (1993).Google Scholar
5. Thess, A. et al. , Science 273, 483 (1996).Google Scholar
6. Maiti, A., Brabec, C. J. and Bernholc, J., Phys. Rev. B 55, 6097 (1997).Google Scholar
7. Nardelli, M. Buongiorno et al. , Phys. Rev. Lett. 80, 313 (1998).Google Scholar
8. Charlier, J. C., Vita, A. De, Blase, X. and Car, R., Science 275, 646 (1997).Google Scholar
9. Maiti, A., Brabec, C. J., Roland, C. M. and Bernholc, J., Phys. Rev. Lett. 73, 2468 (1994).Google Scholar
10. Brabec, C. J., Maiti, A., Roland, C. M. and Bernholc, J., Chem. Phys. Lett. 236, 150 (1995).Google Scholar
11. Ho, D. H. and Lee, Y. H., Phys. Rev. B 58, 7407 (1998).Google Scholar
12. Xia, Y. et al. , Phys. Rev. B 61, 11088 (2000).Google Scholar
13. Schmalz, T. G. et al. , J. Am. Chem. Soc., 110, 1113 (1988).Google Scholar
14. Saito, R., Dresselhaus, G. and Dresselhaus, M. S., Chem. Phys. Lett. 195, 537 (1992).Google Scholar
15. Brabec, C. J., Maiti, A. and Bernholc, J., Chem. Phys. Lett. 219, 473 (1994).Google Scholar
16. Charlier, J., Ebbesen, T. W. and Lambin, P., Phys. Rev. B 53, 11108 (1996).Google Scholar
17. Xu, C. H., Wang, C. Z., Chan, C. T. and Ho, K. M., J. Phys. Cond. Matt. 4, 334 (1996).Google Scholar
18. Rahman, A., Phys. Rev. 34, 6047 (1969).Google Scholar
19. Colombo, L. and Goedecker, S., Phys. Rev. Lett. 73, 122 (1994).Google Scholar