Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-20T12:02:58.612Z Has data issue: false hasContentIssue false

A Versatile new Metallo-Organic Spin-on Process for Preparing Superconducting Thin films

Published online by Cambridge University Press:  28 February 2011

M. E. Gross
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
M. Hong
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
S. Liou
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
P. K. Gallagher
Affiliation:
AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ 07974
Get access

Abstract

A new metallo-organic spin-on technique is described for producing thin films of the high temperature perovskite superconductors, LnBa2Cu3O7−x, where Ln represents a rare earth element. Pyrolysis of the spin-coated films leads to black films up to several microns thick whose degree of orientation is a function of the processing temperature and duration. Representative films of YBa2Cu3O7−x on MgO begin to exhibit orientation with the c-axis perpendicular to the film at heat treatments above 900 'C. The superconducting behavior of a highly oriented film produced at 990 ° C is characterized by Tc (onset) = 89 K, Tc (R=0) = 77 K and Jc = 104 amp cm-2 at 65 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q. and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
[2] Cava, R. J., Batlogg, B., van Dover, R. B., Murphy, D. W., Sunshine, S., Siegrist, T., Remeika, J. P., Reitman, E. A., Zahurak, S. and Espinosa, G. P., Phys. Rev. Lett. 58, 1676 (1987).Google Scholar
[3] Advanced Ceramic Materials, Vol. 2 [38] Sect. II - Processing and Fabrication, pp. 327562 (1987).Google Scholar
[4] Labowitz, R. B., Koch, R. H., Chaudhari, P. and Gambino, R. J., Phys. Rev. B35, 8821 (1987).Google Scholar
[5] Hong, M., Liou, S. H., Kwo, J. and Davidson, B., Appl. Phys. Lett. 51, 694 (1987).Google Scholar
[6] Kwo, J., Hsieh, T. C, Fleming, R. M., Hong, M., Liou, S. H., Davidson, B. A. and Feldman, L. C, Phys. Rev. B36, 4039 (1987).Google Scholar
[7] Wu, X. D., Dijkkamp, D., Ogale, S. B., Inam, A., Chase, E. W., Miceli, P. F., Chang, C. C., Tarascón, J. M. and Venkatesan, T., Appl. Phys. Lett. 51, 861 (1987).Google Scholar
[18] Gross, M. E., Appelbaum, A. and Gallagher, P. K., J. Appl. Phys. 61, 1628 (1987).Google Scholar
Gallagher, P. K. and Gross, M. E., J. Therm. Anal. 31, 1231 (1986).Google Scholar
Gross, M. E., Appelbaum, A. and Schnoes, K. J., J. Appl. Phys. 60, 529 (1986).Google Scholar
[9] Rice, C. E., van Dover, R. B., Fisanick, G. J., in press.Google Scholar