Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-18T12:14:29.165Z Has data issue: false hasContentIssue false

Variation of the Structural Unit in Tellurite Glasses

Published online by Cambridge University Press:  10 February 2011

Shigeru Suehara
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305, Japan; suehara@nirim.go.jp
Kazuo Yamamoto
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305, Japan; suehara@nirim.go.jp
Shunichi Hishita
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305, Japan; suehara@nirim.go.jp
Takashi Aizawa
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305, Japan; suehara@nirim.go.jp
Satoru Inoue
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305, Japan; suehara@nirim.go.jp
Akihiko Nukui
Affiliation:
National Institute for Research in Inorganic Materials, 1-1 Namiki, Tsukuba, Ibaraki 305, Japan; suehara@nirim.go.jp
Get access

Abstract

We show that the variation of the structural unit in tellurite glasses is due to the charge transfer from modifier atoms to TeO6 octahedra with use of first-principles molecular orbital calculations. Orbital overlap population analysis reveals that the transferred electrons to the Te- O antibonding orbital cause breaking Te-O bonds and lead to reducing the coordination number of the Te atom.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lindqvist, O., Acta Chem. Scand. 22, 977 (1968).Google Scholar
2. Brown, I. D., J. Solid State. Chem. 11, 214 (1974).Google Scholar
3. Brady, G. W., J. Chem. Phys. 27, 300 (1957).Google Scholar
4. Arnaudov, M., Dimitrov, V., Dimitrov, Y., and Markova, L., Mater. Res. Bull. 17,1121 (1982).Google Scholar
5. Adams, R. V., Phys. Chem. Glasses 2, 101 (1961).Google Scholar
6. Sekiya, T., Mochida, N., Ohtsuka, A., and Tonokawa, M., J. Non-Cryst. Solids 144, 128 (1992).Google Scholar
7. Pauling, L., The Nature of the Chemical Bond Cornell Univ. Press, 1960.Google Scholar
8. Souda, R., Yamamoto, K., Hayami, W., Aizawa, T., and Ishizawa, Y., Phys. Rev. B50, 4733 (1994).Google Scholar
9. Adachi, H., Tsukada, M., and Satoko, C., J. Phys. Soc. Jpn. 45, 875 (1978).Google Scholar
10. Suehara, S., Yamamoto, K., Hishita, S., and Nukui, A., Phys. Rev. B50, 7981 (1994).Google Scholar
11. Wyckoff, R. W. G., Crystal Structures 2nd ed., Interscience, New York, 1963.Google Scholar
12. Mulliken, R. S., J. Chem. Phys. 23, 1833 (1955).Google Scholar
13. Noev, S., Kozhukharov, V., Gerasimova, I., Krezhov, K., and Sidzhimov, B., J. Phys. C.- Solid State Phys. 12, 2475 (1979).Google Scholar
14. Hoffmann, R., Rev. Mod. Phys. 60, 601 (1988).Google Scholar