Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-23T10:54:08.625Z Has data issue: false hasContentIssue false

The variation in elastic properties of limpet teeth

Published online by Cambridge University Press:  16 March 2012

Dun Lu
Affiliation:
Department of Materials, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
Fei Hang
Affiliation:
Department of Materials, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
Asa H. Barber
Affiliation:
Department of Materials, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
Get access

Abstract

Limpet teeth are an example of a biological short fiber reinforced composite material used for a mechanical function. The local micro-scale elastic properties of limpet teeth were examined by bending FIB fabricated beams of the limpet tooth material using atomic force microscopy (AFM). The elastic modulus values for the limpet tooth material varied from 140 GPa at the tooth posterior edge, through 90 GPa at the tooth core to 120 GPa at the tooth anterior edge. This variation in the elastic modulus of limpet tooth material at the posterior, interior and core regions of the tooth is indicative of a mechanically graded structure and is expected to enhance the durability of limpet teeth during rasping over rock surfaces during feeding.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kamat, S., Su, X., Ballarini, R., Heuer, A. H., Nature 405, 1036 (2000).Google Scholar
2. Rho, J. Y., Kuhn-Spearing, L., Zioupos, P., Med. Eng. Phys. 20, 92 (1998).Google Scholar
3. Gao, H., Ji, B., Jäger, I. L., Arzt, E., Fratzl, P., Proc. Nat. Acad. Sci. 100, 5597 (2003).Google Scholar
4. Li, X., Chang, W. C., Chao, Y. J., Wang, R., Chang, M., Nano Letters 4, 613 (2004).Google Scholar
5. Seto, J., Gupta, H. S., Zaslansky, P., Wagner, H. D., Fratzl, P., Adv. Funct. Mater. 18, 1905 (2008).Google Scholar
6. Tai, K., Dao, M., Suresh, S., Palazoglu, A., Ortiz, C., Nat. Mater. 6, 454 (2007).Google Scholar
7. Weiner, S., Wagner, H. D., Annual Rev. Mater. Sci. 28, 271 (1998).Google Scholar
8. Mitchison, J. M., Swann, M. M., J. Exp. Biol. 32, 734 (1955).Google Scholar
9. Lu, D., Barber, A. H., J. R. Soc. Interface doi: 10.1098/rsif.2011.0688 Google Scholar
10. Weaver, J. C., Wang, Q., Miserez, A., Tantuccio, A., Stromberg, R., Bozhilov, K. N., Maxwell, P., Nay, R., Heier, S. T., DiMasi, E., Kisailus, D., Materials Today 13, 42 (2010).Google Scholar
11. van der Wal, P., Giesen, H., Videler, J., Mater. Sci. Eng. C 7, 129 (2000).Google Scholar
12. Jimenez-Palomar, I., Shipov, A., Shahar, R., Barber, A. H., J. Mech. Beh. Biomed. Mater. 5, 149 (2012).Google Scholar
13. Fratzl, P., Learning From Nature How To Design New Implantable Biomaterialsis: From Biomineralization Fundamentals To Biomimetic Materials and Processing Routes. Ed. Reiss, R. L., Weiner, S.. NATO Science Series. 15-34 (2005).Google Scholar