Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-27T17:12:33.606Z Has data issue: false hasContentIssue false

Vapour Phase Growth of Layered MoO3: A New Kinetic Approach for Volatile Metal Oxides

Published online by Cambridge University Press:  16 February 2011

H.C. Zeng*
Affiliation:
Department of Chemical and Environmental Engineering Faculty of Engineering, National University of Singapore10 Kent Ridge Crescent, Singapore119260, Email:chezhc@nus.edu.sg
Get access

Abstract

A simple yet versatile growth kinetic method (and device) has been developed in conjunction with present vapour phase preparation of layered MoO3 (orthorhombic). Using purified air at atmospheric pressure a sufficient amount of oxygen is warranted to ensure stoichiometry of grown metal oxide. The empirical vapour condensation rate of MoO3 is RE = 1.20×10-3ΔP2.07 over 642 to 660°C, where ΔP is the partial pressure difference of MoO3 between the source and condensed crystals. Based on observed crystal morphology and XRD result, a more precise MoO3 condensation kinetic model has been developed to explain the layer-by-layer growth of the layered structure. The driving force of the condensation growth is investigated with respect to the experimental set-up. On the basis of this work, it is suggested that the new kinetic approach is suitable for other volatile metal oxides or inorganic crystalline materials when an appropriate preparative atmosphere is selected.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Thorne, R.E., Phys. Today 49(5), 42 (1996).Google Scholar
2. Tagaya, H., Ara, K., Kadokawa, J.-I., Karasu, M., and Chiba, K., J. Mater. Chem. 4, 551 (1994).Google Scholar
3. Sekiya, T., Mochida, N., and Ogawa, S., J. Non-Cryst. Solids 185, 135 (1995).Google Scholar
4. Zeng, H.C., J. Mater. Res. 11, 703 (1996).Google Scholar
5. Zeng, H.C., J. Crystal Growth 160, 119 (1996).Google Scholar
6. Colton, B.J., Guzman, A.M., and Rabalais, J.W., J. Appl. Phys. 49, 409 (1978).Google Scholar
7. Hinokuma, K., Kishimoto, A., and Kudo, T., J. Electrochem. Soc. 141, 876 (1994).Google Scholar
8. Sabu, K.R., Rao, K.V., and Nair, C.G.R., Indian J. Chem. 33B, 1053 (1994).Google Scholar
9. Zhang, C.-M., Chen, S.-Y., Yang, Z.-P., and Peng, S.-Y., in Sol-Gel Processing and Applications, Attia, Y.A., Ed., Plenum Press, New York, 1994, p. 379.Google Scholar
10. Hayashi, H., Sugiyama, S., Masaoka, N., and Shigemoto, N., Ind. Eng. Chem. Res. 34, 137 (1995).Google Scholar
11. Fournier, M., Aouissi, A., and Rocchiccioli-Deltcheff, C., J. Chem. Soc., Chem. Commun. Iss. 3, 307 (1994).Google Scholar
12. Benard, P., Seguin, L., Louer, D., and Figlarz, M., J. Solid State Chem. 108, 170 (1994).Google Scholar
13. Anwar, M., and Hogarth, C.A., Int. J. Electron. 66, 901 (1989).Google Scholar
14. Ohfuji, S., Thin Solid Films 115, 299 (1984).Google Scholar
15. Ohtsuka, H., and Yamaki, J., Solid State Ionics 35, 201 (1989).Google Scholar
16. Amoldussen, T.C., J. Electrochem. Soc. 123, 527 (1976).Google Scholar
17. Donnadieu, A., Davazoglou, D., and Abdellaoui, A., Thin Solid Films 164, 333 (1988).Google Scholar
18. Julien, C., Khelfa, A., Hussain, O.M., and Nazri, G.A., J. Crystal Growth 156, 235 (1995).Google Scholar
19. Zeng, H.C., Sheu, C.W., and Hia, H.C., Chem. Mater. 10, 974 (1998).Google Scholar
20. Anwar, M., Hogarth, C.A., and Lott, K.A.K., J. Mater. Sci. 24, 1660 (1989).Google Scholar
21. Anwar, M., Hogarth, C.A., and Bulpett, R., J. Mater. Sci. 24, 3087 (1989).Google Scholar
22. Mestl, G., Ruiz, P., Delmon, B., and Knozinger, H., J. Phys. Chem. 98, 11269 (1994).Google Scholar
23. Chippindale, A.M., and Cheetham, A.K., in Molybdenum: An Outline of Its Chemistry and Uses, Braithwaite, E.R., and Haber, J., Eds., Elsevier Science, Amsterdam, 1994, Ch. 3, p. 146.Google Scholar
24. Brice, J.C., Crystal Growth Processes, Halsted Press, New York, 1986, Ch. 9, p. 212.Google Scholar
25. Killeffer, D.H., and Arthur, L., Molybdenum Compounds, Their Chemistry and Technology, Interscience, New York, 1952, p. 31.Google Scholar
26. Zangwill, A., Physics at Surfaces, Cambridge University Press, Cambridge, 1990, Ch. 15, p. 400.Google Scholar